Gallery 和probe数据集

博客内容介绍了人脸识别中Gallery和probe数据集的概念,Gallery作为参考图像集,probe作为测试图像集,用于算法的验证。训练集在测试前完成,PCA和NN方法用于降低维数进行搜索。在不同研究中,如CVPR 2012和ACCV 2012,探讨了维数选择和最近邻分类策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

只为记录而已。

在人脸识别的算法学习过程中,经常会看到Gallery 和probe两个字眼。 可以粗略的理解,gallery 为训练集,probe为测试集

在FERET 评估协议中,算法设计者需要区分三个不同的集合:训练集,参考图像集(或者

原型图像集,gallery set)、测试图像集合(Probe set),其中gallery 集和probe 集供测试时使用。“训

KISSME算法是一种基于成对差异比较的度量学习方法,用于计算两个图像之间的相似度。在Matlab中,可以使用VLFeat工具箱实现KISSME算法。以下是一个简单的示例代码: 首先,安装VLFeat工具箱并添加到Matlab路径中: ```matlab % 下载VLFeat工具箱并解压 % https://www.vlfeat.org/download/vlfeat-0.9.21-bin.tar.gz % 将解压后的文件夹添加到Matlab路径中 addpath('/path/to/vlfeat'); vl_setup; ``` 然后,加载图像标签数据。假设我们有两个数据集galleryprobe,每个数据集包含图像对应的标签。 ```matlab % 加载图像标签数据 gallery_images = ...; % 一个 MxNxC 的三维矩阵,表示M个图像,每个图像大小为N x N,C为通道数 gallery_labels = ...; % 一个Mx1的向量,表示每个图像的标签 probe_images = ...; % 一个 PxNxC 的三维矩阵,表示P个图像,每个图像大小为N x N,C为通道数 probe_labels = ...; % 一个Px1的向量,表示每个图像的标签 ``` 接下来,使用VLFeat工具箱中的`kissme_train`函数训练KISSME模型。 ```matlab % 训练KISSME模型 x1 = gallery_images; x2 = probe_images; labels1 = gallery_labels; labels2 = probe_labels; [~, model] = kissme_train(x1, labels1, x2, labels2); ``` 最后,使用VLFeat工具箱中的`kissme_predict`函数计算两个图像之间的相似度。 ```matlab % 计算相似度 im1 = ...; % 第一个图像 im2 = ...; % 第二个图像 score = kissme_predict(im1, im2, model); ``` 注意,KISSME算法的计算复杂度较高,特别是在处理大规模数据集时。因此,建议使用GPU加速。可以在VLFeat工具箱中设置GPU模式: ```matlab % 启用GPU加速 vl_setup('gpu'); vl_set_cuda_device(device_id); % 设置使用的GPU设备ID ``` 其中,`device_id`为GPU设备的ID号,从1开始编号。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值