《统计学习方法》(第八章)——提升方法

提升方法AdaBoost算法

提升方法的基本思路

在概率近似正确(PAC)学习的框架中,如果存在一个多项式的学习算法能够学习它,学习的正确率仅比随机的好,那么就称为弱可学习,而强可学习与弱可学习是等价的,所以可以通过方法来提升弱可学习为强可学习,AdaBoost算法采取加权多数表决的方式来减少误差率

AdaBoost算法

输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={ (x1,y1),(x2,y2),...,(xN,yN)}其中 x i ∈ R n , y i ∈ { − 1 , + 1 } x_i \in R^n, y_i \in \{-1,+1\} xiRn,yi{ 1,+1}
输出:最终分类器 G ( x ) G(x) G(x)
( 1 ) (1) (1)初始化训练数据权值分布
D 1 = ( w 11 , w 12 , . . . , w 1 N ) ,        w 1 i = 1 N ,       i = 1 , 2 , . . . . , N D_1=(w_{11},w_{12},...,w_{1N}), \ \ \ \ \ \ w_{1i}=\frac{1}{N},\ \ \ \ \ i=1,2,....,N D1=(w11,w12,...,w1N),      w1i=N1,     i=1,2,....,N
( 2 ) (2) (2) m = 1 , 2 , . . . . , M m=1,2,....,M m=1,2,....,M

  • ( a ) (a) (a)使用权值分布 D m D_m Dm的训练数据集学习,得到基本分类器
    G m ( x ) : X → { − 1 , + 1 } G_m(x):X \to \{-1,+1\} Gm(x):X{ 1,+1}
  • ( b ) (b) (b)计算 G m ( x ) G_m(x) Gm(x)在训练数据集上的分类误差率,选择误差率最小的作为 G m ( x ) G_m(x) Gm(x)
    e m = ∑ i = 1 N P ( G m ( x i ) ≠ y i ) = ∑ i = 1 N w m i I ( G m ( x i ) ≠ y i ) e_m=\sum\limits_{i=1}^NP(G_m(x_i) \ne y_i)=\sum\limits_{i=1}^Nw_{mi}I(G_m(x_i)\ne y_i) em=i=1NP(Gm(xi)=yi)=i=1NwmiI(Gm(xi)=yi)
  • ( c ) (c) (c)计算 G m ( x ) G_m(x) Gm(x)的系数
    a m = 1 2 log ⁡ 1 − e m e m a_m=\frac{1}{2} \log \frac{1-e_m}{e_m} am=21logem1em
  • ( d ) (d) (d)更新训练数集的权值分布
    D m + 1 = ( w m + 1 , 1 , w m + 1 , 2 , . . . , w m + 1 , N ) D_{m+1}=(w_{m+1,1},w_{m+1,2},...,w_{m+1,N}) Dm+1=(wm+1,1,wm+1,2,...,wm+1,N)
    w m + 1 , i = w m i Z m exp ⁡ ( − a m y i G m ( x i ) ) ,        i = 1 , 2 , . . . , N w_{m+1,i}=\frac{w_{mi}}{Z_m}\exp (-a_my_iG_m(x_i)),\ \ \ \ \ \ i=1,2,...,N wm+1,i=Zmwmiexp(amyiGm(xi)),      i=1,2,...,N
    其中
    Z m = ∑ i = 1 N w m i exp ⁡ ( − a m y i G m ( x i ) ) Z_m=\sum\limits_{i=1}^Nw_{mi}\exp (-a_my_iG_m(x_i)) Zm=i=1Nwmiexp(amyiGm(xi))
    ( 3 ) (3) (3)构建基本分类器的线性组合
    f ( x ) = ∑ m = 1 M a m G m ( x ) f(x)=\sum\limits_{m=1}^Ma_mG_m(x) f(x)=m=1MamGm(x)
    G ( x ) = s i g n ( f ( x ) ) = s i g n ( ∑ m = 1 M a m G m ( x ) ) G(x)=sign(f(x))=sign(\sum\limits_{m=1}^Ma_mG_m(x)) G(x)=sign(f(x))=sign(m=1MamGm(x))
    如果被误分类,则权值被放大
    e 2 a m = 1 − e m e m e^{2a_m}=\frac{1-e_m}{e_m} e2am=em1em

AdaBoost算法的训练误差分析

AdaBoost算法最终分类器的训练误差界为
1 N ∑ i = 1 N I ( G ( x i ) ≠ y i ) ≤ 1 N ∑ i = 1 N exp ⁡ ( − y i f ( x i ) ) = ∏ i = 1 N Z i \frac{1}{N}\sum\limits_{i=1}^NI(G(x_i)\ne y_i) \le \frac{1}{N}\sum\limits_{i=1}^N \exp(-y_if(x_i))=\prod\limits_{i=1}^NZ_i N1i=1NI(G(x

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值