题目描述
给定一个多项式 F(x) ,请求出一个多项式 G(x), 满足 F(x)∗G(x)≡1(modxn)系数对 998244353 取模。
输入格式
首先输入一个整数 n, 表示输入多项式的项数。
接着输入 n个整数,第 i 个整数 a i a_i ai 代表 F(x) 次数为i−1 的项的系数。
输出格式
输出 n 个数字,第 i 个整数 b i b_i bi 代表 G(x) 次数为 i−1 的项的系数。 保证有解。
输入输出样例
输入 #1
5
1 6 3 4 9
输出 #1
1 998244347 33 998244169 1020
说明/提示
1 ≤ n ≤ 1 0 5 , 0 ≤ a i ≤ 1 0 9 1≤n≤10^5,0≤ai≤10^9 1≤n≤105,0≤ai≤109
#include<bits/stdc++.h>
using namespace std;
int read(){
int q=0;char ch=' ';
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
return q;
}
const int mod=998244353,G=3,N=2100000;
int n;
int a[N],b[N],c[N],rev[N];
int ksm(int x,int y){
int re=1;
for(;y;y>>=1,x=1LL*x*x%mod) if(y&1) re=1LL*re*x%mod;
return re;
}
void NTT(int *a,int n,int x){
for(int i=0;i<n;++i) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int gn=ksm(G,(mod-1)/(i<<1));
for(int j=0;j<n;j+=(i<<1)){
int t1,t2,g=1;
for(int k=0;k<i;++k,g=1LL*g*gn%mod){
t1=a[j+k],t2=1LL*g*a[j+k+i]%mod;
a[j+k]=(t1+t2)%mod,a[j+k+i]=(t1-t2+mod)%mod;
}
}
}
if(x==1) return;
int ny=ksm(n,mod-2); reverse(a+1,a+n);
for(int i=0;i<n;++i) a[i]=1LL*a[i]*ny%mod;
}
void work(int deg,int *a,int *b){
if(deg==1) {b[0]=ksm(a[0],mod-2);return;}
work((deg+1)>>1,a,b);
int len=0,orz=1;
while(orz<(deg<<1)) orz<<=1,++len;
for(int i=1;i<orz;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));
for(int i=0;i<deg;++i) c[i]=a[i];
for(int i=deg;i<orz;++i) c[i]=0;
NTT(c,orz,1),NTT(b,orz,1);
for(int i=0;i<orz;++i) b[i]=1LL*(2-1LL*c[i]*b[i]%mod+mod)%mod*b[i]%mod;
NTT(b,orz,-1);
for(int i=deg;i<orz;++i) b[i]=0;
}
int main(){
n=read();
for(int i=0;i<n;++i) a[i]=read();
work(n,a,b);
for(int i=0;i<n;++i) printf("%d ",b[i]);
return 0;
}