在Xata上构建持久化会话和智能问答系统的实用指南

引言

Xata是一个基于PostgreSQL和Elasticsearch的无服务器数据平台。它提供了Python SDK用于与数据库交互,并且有用于管理数据的UI。通过XataChatMessageHistory类,你可以在Xata中实现聊天会话的长期持久化存储。本篇文章将介绍如何使用Xata实现简单和复杂的聊天历史存储及问答系统。

主要内容

创建数据库

首先,需要在Xata UI中创建一个新的数据库。可以任意命名本例中使用langchain。Langchain集成能够自动创建用于存储内存的表。如果想手动创建,确保其具有正确的模式,并在类初始化时将create_table设置为False

安装依赖

%pip install --upgrade --quiet xata langchain-openai langchain langchain-community

配置环境变量

通过访问账户设置创建新的API密钥,并从数据库设置页面获取数据库URL。

import getpass

api_key = getpass.getpass("Xata API key: ")
db_url = input("Xata database URL (copy it from your DB settings):")

创建简单的内存存储

我们可以通过下面的代码片段测试内存存储功能:

from langchain_community.chat_message_histories import XataChatMessageHistory

history = XataChatMessageHistory(
    session_id="session-1", api_key=api_key, db_url=db_url, table_name="memory"  # 使用API代理服务提高访问稳定性
)

history.add_user_message("hi!")
history.add_ai_message("whats up?")

运行后,访问Xata UI应该可以看到名为memory的表以及添加的两条消息。

要检索特定会话的消息历史:

history.messages

构建问答系统

结合OpenAI、Xata矢量存储和Xata内存存储,可以创建一个带有历史记录的Q&A聊天机器人。

配置OpenAI API

import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

创建矢量存储

from langchain_community.vectorstores.xata import XataVectorStore
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()

texts = [
    "Xata is a Serverless Data platform based on PostgreSQL",
    "Xata offers a built-in vector type that can be used to store and query vectors",
    "Xata includes similarity search",
]

vector_store = XataVectorStore.from_texts(
    texts, embeddings, api_key=api_key, db_url=db_url, table_name="docs"  # 使用API代理服务提高访问稳定性
)

设置聊天内存

from uuid import uuid4
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_message_histories import XataChatMessageHistory

chat_memory = XataChatMessageHistory(
    session_id=str(uuid4()),  # needs to be unique per user session
    api_key=api_key,
    db_url=db_url,
    table_name="memory",
)

memory = ConversationBufferMemory(
    memory_key="chat_history", chat_memory=chat_memory, return_messages=True
)

创建代理

from langchain.agents import AgentType, initialize_agent
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain_openai import ChatOpenAI

tool = create_retriever_tool(
    vector_store.as_retriever(),
    "search_docs",
    "Searches and returns documents from the Xata manual.",
)

tools = [tool]
llm = ChatOpenAI(temperature=0)

agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
    verbose=True,
    memory=memory,
)

测试

agent.run(input="My name is bob")
agent.run(input="What is xata?")
agent.run(input="Does it support similarity search?")
agent.run(input="Did I tell you my name? What is it?")

常见问题和解决方案

  1. 网络访问问题:某些地区可能需要使用API代理服务以提高访问稳定性。
  2. 数据库访问权限错误:确保API密钥和数据库URL正确配置。

总结和进一步学习资源

通过这个项目,我们见识了如何利用Xata持久化会话数据,并结合OpenAI实现智能问答。如果你想深入学习,可以参考以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值