数据战略与精益思维:提升组织效能的关键路径
1. 数据战略的重要性与构建
在当今数字化时代,数据的价值日益凸显,不仅仅局限于传统的运营用途或简单的数据管理。现代数据分析对生产数据的需求与运营应用的需求同样重要。一个精心规划和执行的数据战略,能够确保组织采取行动,最大限度地发挥分析或数据共享的能力,助力组织在未来更好地实现其使命。
1.1 数据战略的适应性与普适性
数据战略的制定方法应具有适应性,能够应对业务战略、客户需求、技术和法规的变化。而且,这种方法不受组织类型、行业或数据分析成熟度水平的限制。
1.2 数据战略的核心与关键要素
数据战略的开发围绕端到端的数据生命周期展开,这需要足够的高管支持和认同,以推动变革。全面的态势感知至关重要,它能确保数据战略带来与组织的使命、愿景、目标、优势、劣势以及外部运营环境相契合的成功结果。态势分析还能帮助我们理解为了高效实施潜在的分析计划需要做出哪些改变。
对于每个分析计划,数据生命周期各阶段当前能力与期望能力之间的差距有助于确定数据战略目标。为实现这些目标,多个数据战略计划将推动数据生命周期各阶段以及整个技术、人员和流程的改进。
1.3 数据战略的实施与优化
理想情况下,数据战略计划应采用敏捷方法交付,以确保在每个有时间限制的阶段都能获得渐进式的收益,而不是等待瀑布式项目在未来某个时间交付。沟通计划以及将个人目标与数据战略保持一致也必须成为执行计划的一部分。为了了解战略是否按计划进行,需要一个基于价值成果的衡量计划。通过定期的衡量和审查,数据战略将不断得到调整和优化。
以下是数据战略构建的关键步骤总结:
订阅专栏 解锁全文
1551

被折叠的 条评论
为什么被折叠?



