随机森林(Random Forest) -- 原理及Python实现

1. 基本介绍

随机森林(Random Forest,简称RF)是Bagging的一个扩展变体。RF在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。
随机森林,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一刻决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为哪一类。
在建立每一棵决策树的过程中,有两点需要注意——采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,进行有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。

2. 随机森林的分类

随机森林用于分类时,采用n个决策树分类,将分类结果用简单投票得到最终分类,提高准确率。
随机森林时对决策树的集成,其不同之处如下:

  1. 采样差异:从含m个样本的数据集中有放回采样,得到含m个样本的采样集用于训练,保证每个决策树的训练样本不完全一样;
  2. 特征选择差异:每个决策树的k个分类特征时所在特征中随机选择的(k需要调参)。

随机森林需要调整的参数:

  • 决策树的个数m;
  • 特征属性的个数k;
  • 递归次数(决策树的深度);

实现流程

  1. 导入数据并将特征转为float形式;
  2. 将数据集合分成几份,方便交叉验证;
  3. 构造数据子集(随机采样),并在指定特征个数(假设m个,调参)下选择最优特征;
  4. 构造决策树(决策树的深度);
  5. 创建随机森林(多个决策树的结合);
  6. 输入测试集并进行测试,输出测试结果。

3. 随机森林的优点

  • 在当前的很多数据集上,相对于其他算法有着很大的优势;
  • 能够处理高纬度(feature)的数据,并且不用做特征选择;
  • 在训练完后,能够给出哪些feature比较重要;
  • 创建随机森林时,对generalization error使用的是无偏估计;
  • 训练速度快;
  • 在训练过程中,能够监测到feature间的相互影响;
  • 容易做成并行化方法;
  • 理解、实现简单。

4. 随机森林的代码实现

在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor。当然RF的变种Extra Trees也有, 分类类ExtraTreesClassifier,回归类ExtraTreesRegressor。由于RF和Extra Trees的区别较小,调参方法基本相同,本文只关注于RF的调参。

RF框架参数:

  1. n_estimators: 也就是弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易欠拟合,n_estimators太大,计算量会太大,并且n_estimators到一定的数量
  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值