2025年10月20日 github Java 热门项目速报 上榜15个项目
数据统计时间:2025-10-20 20:13:12
1. iflytek/astron-agent

📊 数据指标:
⭐ stars : 2.1k | 🍴 forks : 138
🔗 https://github.com/iflytek/astron-agent
项目简介
Astron Agent 是由科大讯飞推出的面向AI开发者和各类组织的企业级智能体(Agent)开发平台。该平台提供从模型托管、应用开发到性能优化与访问控制的全生命周期支持,致力于降低智能体开发门槛,提升开发效率。
核心特性
平台创新性地融合了智能RPA技术,使Agent不仅能“思考”生成内容,更能“行动”完成跨系统、跨桌面环境的复杂任务链,实现“决策-执行”闭环。支持一键部署,具备高可用架构,适用于从小型项目到大型企业的多样化需求。
技术生态与支持
Astron Agent 提供丰富的开箱即用工具生态,集成科大讯飞开放平台的AI能力,支持多语言后端(Java、Go、Python)和现代化前端技术栈(TypeScript + React)。同时提供完整的文档体系、部署指南和开发者支持,助力快速构建和落地AI应用。
2. Kodezi/Chronos

📊 数据指标:
⭐ stars : 4k | 🍴 forks : 225
🔗 https://github.com/Kodezi/Chronos
项目介绍
概述
Kodezi Chronos 是全球首个以调试为核心的大型语言模型,专为仓库级、记忆驱动的代码理解而设计。它不同于传统的代码补全模型,专注于根因分析与跨文件修复,显著提升自动化调试效率和准确性。
核心优势
Chronos 在多维度性能上远超现有模型:自主调试成功率达 67.3%,相比 GPT-4.1 提升 4.5 倍;人类偏好度达 89%;平均仅需 7.8 次迭代即可完成修复,并减少 40% 调试时间。在百万行以上代码库中,其表现更是基准模型的 15.7 倍。
技术创新
该模型采用“调试优先”架构,基于 4250 万真实调试案例训练,集成自适应图引导检索(AGR)与持久化调试记忆(PDM),实现高精度上下文获取与跨会话学习。其七层系统设计支持多源输入处理、自主调试循环与可解释性分析,适用于复杂工程场景。
应用与开放
Chronos 将通过 Kodezi OS 平台提供服务,预计 2026 年初上线。当前仓库开放 MRR 基准测试套件与评估框架,供研究社区使用,推动智能调试技术发展。
3. apache/arrow-java

📊 数据指标:
⭐ stars : 62 | 🍴 forks : 88
🔗 https://github.com/apache/arrow-java
项目简介
核心功能与数据结构
Apache Arrow Java 是 Apache Arrow 项目的 Java 实现,旨在提供高效的列式内存数据交换能力。其核心抽象包括 ValueVector,用于存储同类型数据序列;VectorSchemaRoot,作为包含多个向量的容器并遵循指定 schema;以及通过 IPC 格式实现记录批次的流式传输与文件序列化,支持高性能跨平台数据交互。
构建与依赖管理
项目需从源码构建,依赖特定版本的 Flatbuffers 进行元数据传输。为避免版本冲突,Arrow 提供了带有 shade-format-flatbuffers 分类器的 JAR 包,将 Flatbuffers 和 Arrow 格式类打包并重命名。开发者可通过 Maven 引用该 JAR 并自行管理底层依赖版本。
性能优化与配置
Arrow Java 支持多项性能调优选项,如禁用内存访问边界检查(arrow.enable_unsafe_memory_access)和关闭 get 操作的空值校验(arrow.enable_null_check_for_get),以提升运行效率,建议在生产环境中启用。同时推荐设置 Netty 相关 JVM 参数以避免反射异常,并可通过 JVM 参数支持结构体中字段名冲突策略。
4. spring-ai-alibaba/deepresearch

📊 数据指标:
⭐ stars : 78 | 🍴 forks : 20
🔗 https://github.com/spring-ai-alibaba/deepresearch
项目简介
深度研究系统(Deep Research)
基于 spring-ai-alibaba-graph 实现的深度研究系统,旨在通过多智能体协作与自动化流程完成复杂问题的分析与报告生成。系统融合大语言模型(LLM)、网络搜索、代码执行、知识检索(RAG)等能力,实现从问题理解到深度调研的全流程自动化。
核心功能与架构
系统采用分层架构设计,支持模块化扩展。主要流程包括任务解析、信息检索、数据分析、代码执行与报告生成。内置对 Tavily、Jina 等搜索服务的支持,并可通过 Docker 隔离运行 Python 编程节点,确保安全与稳定性。支持 Redis 缓存与 ElasticSearch 向量存储,提升响应效率与知识召回准确率。
快速部署与可观测性
提供 Maven、Docker 及 docker-compose 多种启动方式,便于本地开发与生产部署。集成 Langfuse 实现调用链追踪与调试,支持 OpenTelemetry 标准,提升系统的可观察性与调试效率。同时预留 MCP 服务接口,支持高德地图等外部工具集成,拓展应用场景。
5. ModelEngine-Group/fit-framework

📊 数据指标:
⭐ stars : 2k | 🍴 forks : 326
🔗 https://github.com/ModelEngine-Group/fit-framework
FIT Framework 项目介绍
核心架构与功能特性
FIT Framework 是一款面向企业级 AI 应用开发的 Java 全栈框架,创新性地构建了“三维坐标系”式的技术体系。其核心由三大部分组成:FIT Core 提供多语言函数计算支持,实现插件化热插拔与智能聚散部署;WaterFlow 引擎 支持图形化与声明式双模流式编排,灵活调度复杂业务流程;FEL(FIT Expression for LLM) 作为 Java 生态中的 LangChain 替代方案,封装大模型、知识库与工具链,推动 AI 能力深度融入 Java 工程体系。
设计理念与工程优势
框架遵循“约定优于配置”的设计哲学,通过智能契约机制实现部署无感、协议透明和资源自管理,显著降低开发复杂度。开发者无需关注底层通信与部署模式,即可在单体与分布式之间无缝切换。同时,FIT 原生支持 Java 技术栈,填补了 Java 在 AI 开发领域的生态空白,兼顾高性能与工程规范,助力企业从原型快速迭代至生产级系统。
应用场景与快速上手
FIT 支持从微流程到跨系统长事务的统一编排,适用于智能客服、自动化决策、知识检索等多种 AI 场景。项目提供完整的快速入门指南与技术文档,并以 ModelEngine 平台为应用范例,展示如何基于 FIT 构建商业化大模型应用平台,帮助开发者快速掌握核心用法并投入实际项目开发。
6. spring-ai-alibaba/JManus

📊 数据指标:
⭐ stars : 219 | 🍴 forks : 60
🔗 https://github.com/spring-ai-alibaba/JManus
## ✨ 项目简介
JManus 是什么
JManus 是 Manus 的纯 Java 实现版本,由 Spring AI Alibaba 团队开发并广泛应用于阿里巴巴集团内部多个业务场景。它专注于处理需要较高确定性的探索式任务,例如从海量数据中快速提取关键信息并写入数据库单行记录,或对系统日志进行智能分析与异常告警。
核心特性
项目采用“计划-执行”(Plan-Act)模式,确保每一步操作都具备高度可预测性与可控性。同时,原生支持模型上下文协议(MCP),便于与外部AI服务和工具链无缝集成。JManus 提供完整的 HTTP 接口能力,方便 Java 开发者进行二次开发和系统嵌入。
快速启动与部署
支持通过下载 JAR 包或源码运行两种方式快速启动,内置 H2、MySQL 和 PostgreSQL 多种数据库支持,并提供图形化引导配置页面。配合 DashScope API 密钥,5 分钟内即可搭建一个可运行的多智能体协作系统,适用于各类自动化任务场景。
7. loks666/get_jobs

📊 数据指标:
⭐ stars : 4.6k | 🍴 forks : 581
🔗 https://github.com/loks666/get_jobs
项目简介
Get Jobs【工作无忧】 是一款专为程序员设计的开源自动化求职工具,致力于帮助开发者高效投递兼职与全职岗位。项目以实用性和人性化为核心,集成主流招聘平台如 Boss 直聘、猎聘等,通过自动化脚本实现一键批量投递,大幅提升求职效率。
核心功能
支持 AI 智能匹配岗位,自动根据职位描述生成个性化打招呼语,并可发送图片简历提升回复率。具备智能过滤机制,可排除猎头、外包岗位及不活跃 HR,结合黑名单自动更新与企业微信实时通知,确保投递精准高效。同时提供定时投递、持久登录等功能,减少重复操作。
技术架构与社区生态
项目基于 Java 开发,使用 Playwright 替代 Selenium 提升稳定性,已移除 Chromedriver 依赖,优化部署体积。配置集中化,易于定制。项目遵循 MIT 协议,鼓励社区贡献,拥有活跃的 QQ 交流群,提供免费答疑与协作开发机会,助力用户在实战中成长。
8. langgraph4j/langgraph4j

📊 数据指标:
⭐ stars : 971 | 🍴 forks : 140
🔗 https://github.com/langgraph4j/langgraph4j
项目简介
LangGraph4j 是一个专为 Java 开发者设计的 AI 智能体工作流库,用于构建具有状态记忆和多智能体协作能力的复杂应用。它受到 Python 领域 LangGraph 的启发,并深度集成 LangChain4j 和 Spring AI 等主流 Java AI 框架。
核心特性
该库支持循环图结构与状态持久化,允许智能体在执行过程中共享和更新上下文状态。通过定义节点(Node)和边(Edge),开发者可构建包含条件分支、异步调用和并行执行的复杂工作流。内置检查点机制支持流程中断恢复与调试回放。
功能亮点
提供图形可视化、流式输出、子图嵌套及多线程会话管理等功能,显著提升开发效率。配套的 Studio 可视化工具支持在 Web 界面中实时运行和调试智能体流程。同时兼容 Maven 和 Spring 生态,便于快速集成到现有项目中。
9. ashishps1/awesome-low-level-design

📊 数据指标:
⭐ stars : 18.9k | 🍴 forks : 4.7k
🔗 https://github.com/ashishps1/awesome-low-level-design
项目简介
学习低层设计(LLD)的核心资源库
本项目是一个专注于低层设计(Low Level Design, LLD)与面向对象设计(OOD)的开源学习资源库,旨在帮助开发者系统掌握软件设计基础,并有效准备技术面试中的设计题。
涵盖全面的知识体系
内容涵盖OOP核心概念、类间关系、设计原则(如SOLID、DRY、KISS)、23种经典设计模式(创建型、结构型、行为型),以及UML图解等实用技能,构建完整的面向对象设计知识框架。
实战导向的设计问题训练
提供从易到难的多样化低层设计面试题,如停车场系统、电梯控制、电商平台、打车软件等真实场景问题,配合解题模板,提升实际建模与系统设计能力。
丰富的扩展学习支持
集成优质课程、书籍推荐、在线讲座及社区资源,并鼓励贡献内容,持续更新,助力开发者在实际工程和面试中脱颖而出。
10. ashishps1/awesome-system-design-resources

📊 数据指标:
⭐ stars : 26.8k | 🍴 forks : 6.3k
🔗 https://github.com/ashishps1/awesome-system-design-resources
项目介绍
系统设计学习资源库
这是一个专注于系统设计(System Design)的开源知识库,旨在帮助开发者系统性地掌握分布式系统、高可用架构和大规模服务设计的核心概念。项目内容覆盖从基础到进阶的知识体系,适合准备技术面试或提升架构能力的工程师。
核心内容模块
资源分为多个模块,包括可扩展性、CAP定理、网络协议、数据库设计、缓存机制、异步通信、微服务架构等关键技术主题。每个概念都配有深入浅出的讲解链接,便于循序渐进地学习。
实战与理论结合
除了理论知识,项目还提供大量真实场景的系统设计题目,如设计Twitter、Uber、CDN、支付系统等,并附有视频解析和文章指导,帮助学习者将理论应用于实际问题。
扩展学习支持
项目整合了优质课程、经典书籍《设计数据密集型应用》、行业技术博客、YouTube频道推荐以及必读的分布式系统论文,构建了一个完整的自学生态系统,助力深入理解现代后端架构。
11. PBH-BTN/PeerBanHelper

📊 数据指标:
⭐ stars : 5.2k | 🍴 forks : 129
🔗 https://github.com/PBH-BTN/PeerBanHelper
项目简介
PeerBanHelper 是一款开源的个人网络防火墙安全软件,专注于保护 BT 下载环境的安全与健康。它通过连接支持 Web API 的 BitTorrent 客户端(如 qBittorrent、BiglyBT 等),实时获取 Peer 连接信息,并自动识别和封禁存在异常行为或潜在威胁的客户端。
核心功能
该工具集成了多种反吸血与安全防护机制,包括基于 PeerID 和客户端名称的黑名单、IP/GeoIP 封禁、虚假进度检测、自动连锁封禁、多拨追猎等功能。同时支持通过 AviatorScript 引擎实现高级规则匹配,并提供 WebUI 界面用于查看封禁列表、日志、统计图表及管理规则订阅。
支持与扩展
PeerBanHelper 支持主流 BT 客户端,需配合真实 IP 网络环境使用(如 Docker host 模式)。内置 GeoIP 解析能力,可显示 IP 归属地、ASN、ISP 和网络类型等信息。推荐结合官方维护的规则库使用以获得更佳防护效果,用户也可通过 QQ 或 Telegram 社区获取支持。
12. ageerle/ruoyi-ai

📊 数据指标:
⭐ stars : 4.2k | 🍴 forks : 1k
🔗 https://github.com/ageerle/ruoyi-ai
项目简介
RuoYi AI 是一个企业级开箱即用的智能AI助手平台,致力于为开发者和企业提供高效、安全、可扩展的AI应用解决方案。项目深度融合主流AI技术与企业级开发框架,支持多种大模型接入和本地化部署,满足不同场景下的智能化需求。
核心功能
平台支持 OpenAI、通义千问、ChatGLM 等多模型集成,并深度对接 FastGPT、扣子(Coze)、DIFY 等主流AI平台。具备实时流式对话、AI编程辅助、私有知识库构建(RAG)、多模态内容生成等能力,涵盖文本、图像、文档等多种处理形式,提供统一接口实现多平台无缝切换。
技术架构
基于 Spring Boot 3.4 + Spring AI + Langchain4j 构建后端核心,前端采用 Vue 3 + Vben Admin,结合 Milvus/Weaviate/Qdrant 等向量数据库实现本地化RAG方案。系统支持 Ollama、vLLM 本地推理,保障数据安全与灵活部署。
开源生态
项目遵循 MIT 开源协议,拥有活跃的社区支持,提供完整文档、在线体验和多渠道交流群组,助力开发者快速上手与二次开发,推动企业智能化转型。
13. langchain4j/langchain4j

📊 数据指标:
⭐ stars : 9.3k | 🍴 forks : 1.7k
🔗 https://github.com/langchain4j/langchain4j
项目简介
统一的API接口
LangChain4j为Java开发者提供了统一的API,用于集成多种大语言模型(LLM)服务和向量存储系统。无论是OpenAI、Google Vertex AI等主流LLM提供商,还是Pinecone、Milvus等嵌入式数据库,LangChain4j都通过标准化接口进行封装,极大降低了切换和集成成本。
丰富的功能工具箱
项目内置从基础到高级的完整工具链,涵盖提示词模板、对话记忆管理、函数调用、智能Agent以及RAG(检索增强生成)等核心模式。每个抽象层均提供多个可直接使用的实现方案,支持快速构建复杂的LLM应用。
多框架示例支持
LangChain4j提供丰富的代码示例,覆盖纯Java、Spring Boot、Quarkus、Helidon和Micronaut等多种技术栈,帮助开发者快速上手并融入现有架构,加速开发进程。
14. ZalithLauncher/ZalithLauncher

📊 数据指标:
⭐ stars : 1.2k | 🍴 forks : 123
🔗 https://github.com/ZalithLauncher/ZalithLauncher
项目简介
基于PojavLauncher的优化重构
Zalith Launcher 是一款基于 PojavLauncher 开发的开源 Minecraft 启动器,专为在 Android 设备上运行《Minecraft: Java版》而设计。该项目继承了 PojavLauncher 的核心功能,并在此基础上进行了全面优化与重构,致力于提升用户体验,让更多玩家能够轻松地在移动设备上畅玩 Java 版 Minecraft。
全新功能与体验升级
Zalith Launcher 拥有现代化的界面设计,支持浅色与深色主题切换,提供可自定义的虚拟鼠标图标和启动器背景。内置简易文件管理器,突破安卓权限限制;支持外部存储的游戏目录设置、渲染器插件扩展,并可在启动器内直接下载 Mods、整合包、资源包、存档和光影包,极大简化操作流程。
开源与社区支持
项目遵循 GPL-3.0 开源协议,代码透明,社区驱动。感谢 HMCL、Boardwalk 等优秀项目的贡献,Zalith Launcher 不断融合先进技术,持续迭代更新。通过 Discord 社区提供用户支持,致力于打造安全、稳定、易用的移动端 Minecraft 启动平台。
15. pen4uin/java-memshell-generator

📊 数据指标:
⭐ stars : 2.1k | 🍴 forks : 225
🔗 https://github.com/pen4uin/java-memshell-generator
项目简介
Java内存马生成器(JMG)
Java Memshell Generator(JMG)是一款专为安全研究人员设计的、支持高度自定义的Java内存马生成工具。该工具旨在帮助红队测试、漏洞研究和防御检测分析,支持多种中间件与Web框架组合。
功能特性
JMG支持包括Tomcat、WebLogic、Jetty、WebSphere等主流中间件,覆盖SpringMVC、SpringWebFlux等框架,并兼容AntSword、Behinder、Godzilla等多种常用渗透工具。提供Listener、Filter、Interceptor等多种内存马类型,输出格式涵盖BASE64、BCEL、CLASS、JAR等,满足多样化场景需求。
使用方式
支持图形化界面、命令行、Woodpecker插件及SDK集成四种使用模式。开发者可通过Maven引入SDK,快速集成到自有平台中,实现自动化内存马生成与测试。同时提供详细的文档支持与配置示例,便于快速上手与二次开发。
2025 GitHub热门Java项目速览
831

被折叠的 条评论
为什么被折叠?



