在说贝塞尔曲线之前,我首先要说一说“样条”这个概念。“样条”这个词以前指的是一片木头、橡皮或者金属,用来在纸上画曲线。比如说,如果你有一些分开的图上的点,想要在它们之间画一条曲线(内插或者外插),首先将这些点描在绘图纸上,然后,将样条定在这些点上,并用铅笔沿着样条绕着这些点弯曲的方向画曲线。现在,“样条”指的是数学公式。用贝塞尔样条(即公式)画线,我们就能得到贝塞尔曲线。
贝塞尔曲线之所以被广泛的应用于计算机的辅助设计,是因为贝塞尔样条(公式)具有以下几个重要的特点:
第一,贝塞尔样条常常比较具有美感,这是一个公认的主观评价;
第二,经过不断的调整,贝塞尔样条可以逼近任意的形状;
第三,贝塞尔样条总是由其两个端点开始和结束的,因此它非常好控制;
第四,贝塞尔样条没有奇点,这在计算机的设计中是非常重要的。事实上,贝塞尔曲线总是受限于由端点和控制点连接而成的四边形(称作“凸包”)。
第五,贝塞尔曲线总是与第一个控制点到起点的直线相切,并保持同一方向;同时,也与第二个控制点到终点的直线相切,并保持同一方向。
一条二维的贝塞尔样条是由4个点定义的,两个端点和两个控制点。假设起点是(x0,y0),终点是(x3,y3),两个控制点分别是(x1,y1)和(x2,y2),下面是贝塞尔样条的参数方程:
x(t) = (1-t)3x0 + 3t(1-t)2x1+ 3t2(1-t)x2 + t3x3
y(t) = (1-t)3y0 + 3t(1-t)2y1+ 3t2(1-t)y2 + t3y3
其中,t 的值从0到1变化,这样就可以画出曲线。
在实际的编程中,即使不知道上面的公式也可以使用贝塞尔样条。在Window API中,有现成的函数供调用,利用该函数可以画一条或多条连接的贝塞尔样条:PolyBezier(hdc,apt,iCount)。这个函数中,hdc是设备描述表句柄;apt是POINT结构的数组,前四个点依次给出贝塞尔曲线的起点、第一个控制点、第二个控制点和终点,此后的每一条贝塞尔曲线只需给出三个点,因为后一条贝塞尔曲线的起点就是前一条贝塞尔曲线的终点,如此类推;iCount是数组中点的个数,它的值等于1加上所绘制的曲线条数的三倍。
另外要注意,在画一系列的贝塞尔样条时,只有当第一条贝塞尔曲线的第二个控制点、第一条贝塞尔曲线的终点(也是第二条贝塞尔曲线的起点)和第二条贝塞尔曲线的第一个控制点线性相关时,也就是这三个点在同一条直线上时,曲线在连接点处才是光滑的。
下面是一个交互式的程序,利用上面的这个函数画了一条二维的贝塞尔曲线。程序中,这条贝塞尔曲线的两个控制点,可以通过按住鼠标左键或右键拖动鼠标分别进行改动。程序的源码如下:
///
// Bezier.c文件
#include
LRESULT CALLBACK WndProc(HWND,UINT,WPARAM,LPARAM);
void DrawBezier(HDC hdc,POINT apt[]);
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,
LPSTR lpCmdLine,int nShowCmd)
{
static TCHAR szAppName[] = TEXT("Bezier");
HWND hwnd;
MSG msg;
WNDCLASSEX wndclass;
wndclass.cbSize = sizeof(WNDCLASSEX);
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.lpszClassName = szAppName;
wndclass.lpfnWndProc = WndProc;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL,IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL,IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wndclass.lpszMenuName = NULL;
wndclass.hIconSm = NULL;
RegisterClassEx(&wndclass);
hwnd = CreateWindowEx(WS_EX_CLIENTEDGE,szAppName,TEXT("Bezier"),WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,NULL,NULL,
hInstance,NULL);
ShowWindow(hwnd,nShowCmd);
UpdateWindow(hwnd);
while(GetMessage(&msg,NULL,0,0))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
return msg.wParam;
}
LRESULT CALLBACK WndProc(HWND hwnd,UINT message,WPARAM wParam,LPARAM lParam)
{
static POINT apt[4];
HDC hdc;
int cxClient,cyClient;
PAINTSTRUCT ps;
switch(message)
{
case WM_SIZE:
cxClient = LOWORD(lParam); //低16位为客户区宽度
cyClient = HIWORD(lParam); //高16位为客户区高度
apt[0].x = cxClient / 4; //第一个端点,也称为起始点
apt[0].y = cyClient / 2;
apt[1].x = cxClient / 2; //第一个控制点
apt[1].y = cyClient / 4;
apt[2].x = cxClient / 2; //第二个控制点
apt[2].y = 3*cyClient / 4;
apt[3].x = 3*cxClient / 4; //第二个端点,也称为终点
apt[3].y = cyClient / 2;
return 0;
case WM_LBUTTONDOWN:
case WM_RBUTTONDOWN:
case WM_MOUSEMOVE:
if(wParam & MK_LBUTTON || wParam & MK_RBUTTON)
{
hdc = GetDC(hwnd);
SelectObject(hdc,GetStockObject(WHITE_PEN));
DrawBezier(hdc,apt); //使用白色的笔插除以前的线
if(wParam & MK_LBUTTON)
{
apt[1].x = LOWORD(lParam); //低16位为鼠标点的x值
apt[1].y = HIWORD(lParam); //高16位为鼠标点的y值
}
if(wParam & MK_RBUTTON)
{
apt[2].x = LOWORD(lParam);
apt[2].y = HIWORD(lParam);
}
SelectObject(hdc,GetStockObject(BLACK_PEN));
DrawBezier(hdc,apt); //使用黑色的笔重新画
ReleaseDC(hwnd,hdc);
}
return 0;
case WM_PAINT:
InvalidateRect(hwnd,NULL,TRUE);
hdc = BeginPaint(hwnd,&ps);
DrawBezier(hdc,apt);
EndPaint(hwnd,&ps);
return 0;
case WM_DESTROY:
PostQuitMessage(0);
return 0;
}
return DefWindowProc(hwnd,message,wParam,lParam);
}
void DrawBezier(HDC hdc,POINT apt[])
{
PolyBezier(hdc,apt,4); //Windows提供的画一条贝塞尔曲线的函数
MoveToEx(hdc,apt[0].x,apt[0].y,NULL); //画起始点和第一个控制点的连线
LineTo(hdc,apt[1].x,apt[1].y);
MoveToEx(hdc,apt[2].x,apt[2].y,NULL); //画第二个控制点和终点的连线
LineTo(hdc,apt[3].x,apt[3].y);
}