数学之美---------贝塞尔曲线 .

 自从上个世纪60年代,雷诺汽车公司第一次把由手工设计车体(粘土)的任务转到由计算机来完成,二维的贝塞尔曲线就成了计算机图形学中最有用的曲线之一(继直线和椭圆之后)。在PostScript中,所有曲线都用贝塞尔曲线表示——椭圆线也用贝塞尔曲线来逼近,贝塞尔曲线也用于定义PostScript字体的字符轮廓。今天的我们要感谢Pierm Bezier,是他通过一些数学的计算和推导,最后找到了这套近乎完美的曲线公式,它的作用毫不逊于数学当中另一个奇迹——黄金分割点。不仅仅如此,其实自然界中,看似纷繁复杂的万事万物没有哪一个不蕴含着它自身的规律,或许它们就是一个一个完美的奇迹,等着用数学去发现。

     在说贝塞尔曲线之前,我首先要说一说“样条”这个概念。“样条”这个词以前指的是一片木头、橡皮或者金属,用来在纸上画曲线。比如说,如果你有一些分开的图上的点,想要在它们之间画一条曲线(内插或者外插),首先将这些点描在绘图纸上,然后,将样条定在这些点上,并用铅笔沿着样条绕着这些点弯曲的方向画曲线。现在,“样条”指的是数学公式。用贝塞尔样条(即公式)画线,我们就能得到贝塞尔曲线。

     贝塞尔曲线之所以被广泛的应用于计算机的辅助设计,是因为贝塞尔样条(公式)具有以下几个重要的特点:

            第一,贝塞尔样条常常比较具有美感,这是一个公认的主观评价;

            第二,经过不断的调整,贝塞尔样条可以逼近任意的形状;

            第三,贝塞尔样条总是由其两个端点开始和结束的,因此它非常好控制;

            第四,贝塞尔样条没有奇点,这在计算机的设计中是非常重要的。事实上,贝塞尔曲线总是受限于由端点和控制点连接而成的四边形(称作“凸包”)。

            第五,贝塞尔曲线总是与第一个控制点到起点的直线相切,并保持同一方向;同时,也与第二个控制点到终点的直线相切,并保持同一方向。

     一条二维的贝塞尔样条是由4个点定义的,两个端点和两个控制点。假设起点是(x0,y0),终点是(x3,y3),两个控制点分别是(x1,y1)和(x2,y2),下面是贝塞尔样条的参数方程:

                       x(t) = (1-t)3x0 + 3t(1-t)2x1+ 3t2(1-t)x2 + t3x3

                       y(t) = (1-t)3y0 + 3t(1-t)2y1+ 3t2(1-t)y2 + t3y3

            其中,t 的值从0到1变化,这样就可以画出曲线。

     在实际的编程中,即使不知道上面的公式也可以使用贝塞尔样条。在Window API中,有现成的函数供调用,利用该函数可以画一条或多条连接的贝塞尔样条:PolyBezier(hdc,apt,iCount)。这个函数中,hdc是设备描述表句柄;apt是POINT结构的数组,前四个点依次给出贝塞尔曲线的起点、第一个控制点、第二个控制点和终点,此后的每一条贝塞尔曲线只需给出三个点,因为后一条贝塞尔曲线的起点就是前一条贝塞尔曲线的终点,如此类推;iCount是数组中点的个数,它的值等于1加上所绘制的曲线条数的三倍。

     另外要注意,在画一系列的贝塞尔样条时,只有当第一条贝塞尔曲线的第二个控制点、第一条贝塞尔曲线的终点(也是第二条贝塞尔曲线的起点)和第二条贝塞尔曲线的第一个控制点线性相关时,也就是这三个点在同一条直线上时,曲线在连接点处才是光滑的。

     下面是一个交互式的程序,利用上面的这个函数画了一条二维的贝塞尔曲线。程序中,这条贝塞尔曲线的两个控制点,可以通过按住鼠标左键或右键拖动鼠标分别进行改动。程序的源码如下:



///
// Bezier.c文件

#include 
  
  
   
   

LRESULT CALLBACK WndProc(HWND,UINT,WPARAM,LPARAM);
void DrawBezier(HDC hdc,POINT apt[]);

int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,
       LPSTR lpCmdLine,int nShowCmd)
{
 static TCHAR szAppName[] = TEXT("Bezier");
 HWND hwnd;
 MSG  msg;
 WNDCLASSEX wndclass;

 wndclass.cbSize = sizeof(WNDCLASSEX);
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.lpszClassName = szAppName;
 wndclass.lpfnWndProc = WndProc;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon(NULL,IDI_APPLICATION);
 wndclass.hCursor = LoadCursor(NULL,IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 wndclass.lpszMenuName = NULL;
 wndclass.hIconSm = NULL;

 RegisterClassEx(&wndclass);

 hwnd = CreateWindowEx(WS_EX_CLIENTEDGE,szAppName,TEXT("Bezier"),WS_OVERLAPPEDWINDOW,
  CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,NULL,NULL,
  hInstance,NULL);

 ShowWindow(hwnd,nShowCmd);
 UpdateWindow(hwnd);

 while(GetMessage(&msg,NULL,0,0))
 {
  TranslateMessage(&msg);
  DispatchMessage(&msg);
 }
 return msg.wParam;
}

LRESULT CALLBACK WndProc(HWND hwnd,UINT message,WPARAM wParam,LPARAM lParam)
{
 static POINT apt[4];
 HDC hdc;
 int cxClient,cyClient;
 PAINTSTRUCT ps;

 switch(message)
 {
 case WM_SIZE:
  cxClient = LOWORD(lParam); //低16位为客户区宽度
  cyClient = HIWORD(lParam); //高16位为客户区高度
 
  apt[0].x = cxClient / 4; //第一个端点,也称为起始点
  apt[0].y = cyClient / 2;
  
  apt[1].x = cxClient / 2; //第一个控制点
  apt[1].y = cyClient / 4;

  apt[2].x = cxClient / 2; //第二个控制点
  apt[2].y = 3*cyClient / 4;

  apt[3].x = 3*cxClient / 4; //第二个端点,也称为终点
  apt[3].y = cyClient / 2;

  return 0;

 case WM_LBUTTONDOWN:
 case WM_RBUTTONDOWN:
 case WM_MOUSEMOVE:
  if(wParam & MK_LBUTTON || wParam & MK_RBUTTON)
  {
   hdc = GetDC(hwnd);
   SelectObject(hdc,GetStockObject(WHITE_PEN));
   DrawBezier(hdc,apt);   //使用白色的笔插除以前的线

   if(wParam & MK_LBUTTON)
   {
    apt[1].x = LOWORD(lParam); //低16位为鼠标点的x值
    apt[1].y = HIWORD(lParam); //高16位为鼠标点的y值
   }

   if(wParam & MK_RBUTTON)
   {
    apt[2].x = LOWORD(lParam); 
    apt[2].y = HIWORD(lParam); 
   }

   SelectObject(hdc,GetStockObject(BLACK_PEN));
   DrawBezier(hdc,apt);   //使用黑色的笔重新画
   ReleaseDC(hwnd,hdc);
  }
  return 0;

 case WM_PAINT:
  InvalidateRect(hwnd,NULL,TRUE);
  hdc = BeginPaint(hwnd,&ps);
  DrawBezier(hdc,apt);
  EndPaint(hwnd,&ps);
  return 0;

 case WM_DESTROY:
  PostQuitMessage(0);
  return 0;
 }
 return DefWindowProc(hwnd,message,wParam,lParam);
}

void DrawBezier(HDC hdc,POINT apt[])
{
 PolyBezier(hdc,apt,4); //Windows提供的画一条贝塞尔曲线的函数
 
 MoveToEx(hdc,apt[0].x,apt[0].y,NULL); //画起始点和第一个控制点的连线
 LineTo(hdc,apt[1].x,apt[1].y);

 MoveToEx(hdc,apt[2].x,apt[2].y,NULL); //画第二个控制点和终点的连线
 LineTo(hdc,apt[3].x,apt[3].y);
}



  
  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值