代码下载和视频演示地址:
088基于深度学习的番茄病害检测小程序版本_哔哩哔哩_bilibili
效果展示图如下:

代码文件展示如下:

运行01数据集文本生成制作.py可以读取图片路径保存再txt文本中,
运行02train.py可以对txt文本中的图片路径读取并训练模型,
在02中可以选择的模型有10多种可以对比,包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。

训练的每个epoch都会显示准确率precision、召回率recall和 f1-score

训练完成后评价指标图会保存在result文件夹下。

运行03flask_server.py是使用flask生成http接口连接小程序端,通过小程序传过来的图片,调用logs文件夹下训练好的模型,识别结果返回给小程序端口。

本文介绍了一款基于深度学习的小程序,用于番茄病害检测。通过提供代码示例,展示了从数据预处理、模型训练(包括多种模型选项如AlexNet、ResNet等)到Flask服务器的开发过程,以及训练过程中精度、召回率和F1-score的实时监控。最终,该应用能通过HTTP接口接收图片并返回识别结果。
608

被折叠的 条评论
为什么被折叠?



