算法笔记—背包问题

这篇博客介绍了如何使用动态规划解决01背包、完全背包、多重背包和分组背包问题。通过代码示例展示了不同背包问题的动态规划求解策略,包括二维数组优化和一维数组优化,以及如何处理物品数量有限制的情况。动态规划是解决这类问题的关键,通过状态转移方程和滚动数组等技巧可以高效地找到最优解。
摘要由CSDN通过智能技术生成

背包问题

在这里插入图片描述

01背包问题

在这里插入图片描述
01背包问题限制了每件物品只能用一次,我们可以考虑从前 i i i个物品中选,总体积不超过 j j j的物品的价值最大值。当我们每次考虑放一件物品时,价值最大无非是放或者不放这件物品;当不放这件物品时,价值最大等价于从前 i − 1 i - 1 i1个物品中选,总体积不超过 j j j的价值最大值;当我们放这件物品时,等价于从前 i i i个物品中选,总体积不超过 j − v i j - v_i jvi的价值最大值加上 w i w_i wi,而一旦我们得到了 f [ i , j ] f[i, j] f[i,j],即前 i i i个物品中选,总体积不超过 j j j的物品的价值最大值,其不会发生变化,所代表的就是所有集合中的最大值;即到达了这个状态,不会发生改变,且与之前的状态无关,可以用马尔可夫链来理解,此即动态规划。
二维写法

#include <iostream>
using namespace std;

const int N = 10010;

int v[N], w[N];
int f[N][N];

int main()
{
    int n, m;
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];
    
    for(int j = 1; j <= m; j ++)
    {
        for(int i = 1; i <= n; i ++)
        {
            if(j >= v[i]) f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
            else f[i][j] = f[i - 1][j];
        }
    }
    
    cout << f[n][m] << endl;
}

一维优化:
我们观察得到 f [ i , j ] f[i,j] f[i,j]只与 f [ i − 1 , j ] f[i - 1,j] f[i1,j]有关,我们只需要用到前一时刻的状态,因此可以使用滚动数组将二维变成一维,但要注意在更新时不能使用已经更新过的状态去更新,因此我们在优化时,将体积从大到小枚举,防止从小到大枚举时出现重复更新的情况

#include <iostream>
using namespace std;

const int N = 10010;

int v[N], w[N];
int f[N];

int main()
{
    int n, m;
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = m; j >= v[i]; j --)
        {
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    
    cout << f[m] << endl;
}

完全背包问题

在这里插入图片描述

完全背包问题中每个物品可以用无限多次,用过的物品还可以再用,我们考虑01背包问题中防止重复更新的操作就是在避免使用过的物品重复使用,因此我们将其改为从小到大枚举,正好对应于重复使用物品。

#include <iostream>
using namespace std;

const int N = 1010;

int n, m;
int f[N];
int v[N], w[N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = v[i]; j <= m; j ++) f[j] = max(f[j], f[j - v[i]] + w[i]);
    }
    
    cout << f[m] << endl;
}

多重背包问题

在这里插入图片描述

多重背包问题是限制第 i i i种物品最多有 s i s_i si件,我们可以将 s i s_i si个物品看成独立的个体,问题就简化成了 N S NS NS个物品的01背包问题,此时的时间复杂度为 O ( N S M ) O(NSM) O(NSM)。因此当数据范围较大时我们采取二进制优化,我们将 s i s_i si用二进制拆分,变成 l o g s logs logs个数字的组合,时间复杂度可降为 O ( N M l o g S ) O(NMlogS) O(NMlogS)
在这里插入图片描述

#include <iostream>
using namespace std;
const int N = 250000;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    
    int cnt = 0;
    for(int i = 0; i < n; i ++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        int k = 1;
        
        //二进制拆分
        while(k <= c)
        {
            cnt ++;
            v[cnt] = k * a;
            w[cnt] = k * b;
            c -= k;
            k *= 2;
        }
        
        if(c)
        {
            cnt ++;
            v[cnt] = a * c;
            w[cnt] = b * c;
        }
    }
    
    n = cnt;
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = m; j >= v[i]; j --) f[j] = max(f[j], f[j - v[i]] + w[i]);
    }
    
    cout << f[m] << endl;
    return 0;
}

分组背包问题

在这里插入图片描述

分组背包问题是有若干组物品,每一组中只能选一个物品。因此我们考虑从前 i i i个物品中选,总体积不超过 j j j的所有选法的最大值。

#include <iostream>
using namespace std;

const int N = 110;

int s[N], v[N][N], w[N][N];
int n, m;
int f[N][N];

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++)
    {
        cin >> s[i];
        for(int j = 1; j <= s[i]; j ++)
        {
            cin >> v[i][j] >> w[i][j];
        }
    }
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= m; j ++)
        {
            f[i][j] = f[i - 1][j];
            for(int k = 1; k <= s[i]; k ++)
            {
                if(j >= v[i][k]) f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);
            }
        }
    }
    
    cout << f[n][m] << endl;
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我明白了。关于分支限界法的01背包问题,我可以给你一些思路和算法实现的笔记。 首先,01背包问题是指在有限的背包容量下,从给定的一组物品中选取一些物品放入背包中,使得背包中物品的总价值最大。而分支限界法则是一种解决优化问题的方法,它通过限制问题的搜索空间,逐步缩小问题的解空间,从而获得最优解。 对于01背包问题,我们可以采用以下步骤: 1. 构造一个搜索树,根节点代表空背包,每个节点代表向背包中添加一个物品或不添加物品的决策。 2. 对于每个节点,计算当前背包中物品的总价值以及还有多少容量可以使用。 3. 对于每个未被扩展的节点,计算它的上界价值(即背包在剩余容量中所能获得的最大价值),并按照上界价值从大到小排序。 4. 选择上界价值最大的节点进行扩展,即添加一个物品或不添加物品的两种决策分别扩展出两个子节点。 5. 不断重复步骤3和4,直到搜索树中的所有节点都被扩展完毕。 以下是一个简单的C语言实现,其中用一个结构体表示每个节点的状态,通过一个优先队列来实现按照上界价值排序的功能: ```c #include <stdio.h> #include <stdlib.h> #define MAX_N 1000 int n, c; int w[MAX_N], v[MAX_N]; int max_v; typedef struct Node { int level; int value; int weight; int bound; } Node; typedef struct PriorityQueue { Node* arr[MAX_N]; int size; } PriorityQueue; PriorityQueue* createPriorityQueue() { PriorityQueue* q = (PriorityQueue*)malloc(sizeof(PriorityQueue)); q->size = 0; return q; } void push(PriorityQueue* q, Node* node) { q->arr[q->size++] = node; int i = q->size - 1; while (i > 0 && q->arr[i]->bound > q->arr[(i - 1) / 2]->bound) { Node* temp = q->arr[i]; q->arr[i] = q->arr[(i - 1) / 2]; q->arr[(i - 1) / 2] = temp; i = (i - 1) / 2; } } Node* pop(PriorityQueue* q) { Node* node = q->arr[0]; q->arr[0] = q->arr[--q->size]; int i = 0; while (i * 2 + 1 < q->size) { int j = i * 2 + 1; if (j + 1 < q->size && q->arr[j + 1]->bound > q->arr[j]->bound) { j++; } if (q->arr[i]->bound < q->arr[j]->bound) { Node* temp = q->arr[i]; q->arr[i] = q->arr[j]; q->arr[j] = temp; i = j; } else { break; } } return node; } void solve() { PriorityQueue* q = createPriorityQueue(); Node* root = (Node*)malloc(sizeof(Node)); root->level = 0; root->value = 0; root->weight = 0; root->bound = max_v; push(q, root); while (q->size > 0) { Node* node = pop(q); if (node->bound <= max_v || node->level == n) { continue; } Node* left = (Node*)malloc(sizeof(Node)); left->level = node->level + 1; left->value = node->value + v[left->level]; left->weight = node->weight + w[left->level]; if (left->weight <= c) { left->bound = left->value + (max_v - left->value) * 1.0 / w[left->level]; if (left->value > max_v) { max_v = left->value; } push(q, left); } Node* right = (Node*)malloc(sizeof(Node)); right->level = node->level + 1; right->value = node->value; right->weight = node->weight; right->bound = right->value + (max_v - right->value) * 1.0 / w[right->level]; push(q, right); } } int main() { scanf("%d%d", &n, &c); for (int i = 1; i <= n; i++) { scanf("%d%d", &w[i], &v[i]); max_v += v[i]; } solve(); printf("%d", max_v); return 0; } ``` 希望这些笔记能够对你有所帮助,如果有任何问题,欢迎随时问我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值