UVa 10680 - LCM

题目:求解前n个数的LCM的最后的非零位。

分析:数论。将前n个数的LCM因式分解,然后依次相乘取尾数。

            将前n个数的LCM = 2^k1 * 3^k2 * ...*pn^kn,其中pn位第n个素数,且pn^kn ≤ n;

            首先打表计算素数,然后利用素数去求对应的kn;

            求最后的非零位,去掉5和2的公共个数即可(5不多于2);

            最后将剩余的因子相乘取尾数即可;

说明:除2和5之外的其他素数尾数是1、3、5、7、9都是以4为周期的,可以简化运算。

#include <stdio.h>
#include <string.h>

int visit[1000001];
int prime[1000001];
int size[1000001];

int main()
{
	int prime_count = 0;
	for (int i = 2; i < 1000001; ++ i) {
		if (!visit[i]) {
			prime[prime_count ++] = i;
			for (int j = i+i; j < 1000001; j = j+i) {
				visit[j] = 1;
			}
		}
	}
    int n;
    while (~scanf("%d",&n) && n) {
		memset(size, 0, sizeof(size));
		for (int i = 0; i < prime_count && prime[i] <= n; ++ i) {
			long long now = prime[i]+0LL, bound = n+0LL;
			size[i] = 0;
			while (now <= bound) {
				now *= prime[i];
				size[i] ++;
			}
		}
		
		size[0] -= size[2];
		size[2] -= size[2];
		
		int ans = 1;
		for (int i = 0; i < prime_count && prime[i] <= n; ++ i) {
			if (i != 0 && i != 2) {
				size[i] %= 4;
			}
			for (int j = size[i]; j >= 1; -- j) {
				ans = (ans*prime[i])%10;
			}
		}
		
		printf("%d\n",ans);
    }
    return 0;
} 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值