利用FFT分析比较卡尔曼滤波算法、低通滤波算法、滑动平均滤波的频谱

1 卡尔曼滤波

详见博客 https://blog.csdn.net/moge19/article/details/81750731

2 低通滤波

2.1 算法推导

一阶RC滤波器的硬件电路如图:
在这里插入图片描述
图中输入电压是Vi,电阻R,电容C,输出电压为Vo。

假设电路的输出阻抗很大(即不带任何负载),输入阻抗很小(理想情况)。可以得到以下公式:

V o = 1 1 + j ω R C V i V_o = \frac{1}{1+j\omega RC}V_i Vo=1+jωRC1Vi

电容的阻抗是 Z C = 1 j ω C Z_C = \frac{1}{j\omega C} ZC=jωC1

ω = 2 π f \omega = 2\pi f ω=2πf

截止频率 f c u t = 1 2 π R C f_{cut} = \frac{1}{2\pi RC} fcut=2πRC1,此频率下的信号,通过这个电路,输出电压和输入电压的关系式是 V o = 1 1 + j V i V_o = \frac{1}{1+j}V_i Vo=1+j1Vi

或者时域上的表达式:

V o = V i − R C d V o d t V_o = V_i - RC\frac{dV_o}{dt} Vo=ViRCdtdVo

上式离散后,可以得到:

V o ( k ) = V i ( k ) + R C T s V o ( k − 1 ) 1 + R C T s V_o\left ( k \right )=\frac{V_i\left ( k \right )+\frac{RC}{T_s}V_o\left ( k-1 \right )}{1+\frac{RC}{T_s}} Vo(k)=1+TsRCVi(k)+TsRCVo(k1)

2.2 算法实现

class RC_filter:
    def __init__(self,sampleFrq,CutFrq):
        self.sampleFrq = sampleFrq
        self.CutFrq = CutFrq
        self.adc_old=0
     
    def LowPassFilter_RC_1order(self,Vi):
        RC = 1.0/2.0/math.pi/self.CutFrq 
        Cof1 = 1/(1+RC * self.sampleFrq)
        Cof2 = RC* self.sampleFrq/(1+RC* self.sampleFrq)
        Vo = Cof1 * Vi + Cof2 * self.adc_old	 	
        self.adc_old = Vo
        return Vo  

3 滑动平均滤波

算法实现:

 noise_array =  np.random.normal(0, 400, noise_size)
    
    test_array_mean = [0]*32
    mean_array = []
    for i in range(noise_size):
        test_array_mean[i%32] = noise_array[i]
        mean_array.append(sum(test_array_mean)/32)
            

4 FFT转换比较

源数据频谱图:
在这里插入图片描述卡尔曼滤波后的频谱
在这里插入图片描述RC滤波后的频谱
在这里插入图片描述从图中可以看出一阶的卡尔曼滤波与RC低通滤波的滤波效果一样
滑动平均滤波后的频谱图:
在这里插入图片描述从图中可以看出,滑动平均滤波,在低频段较之卡尔曼滤波和低通滤波,其频谱得到的幅值是其余二者的数十倍,这是由于求均值时,将部分噪声数据也计算到信号数据中导致的,因此可以看出,滑动平均滤波不能有效得将噪声数据滤掉,不过在工程因为计算简单,浮点运算少,甚至没有,所以得到广泛运用。

5 实现代码

# -*- coding: utf-8 -*-
"""
Created on Fri Feb 15 20:35:39 2019

@author: ASUS
"""

import numpy as np
import matplotlib.pyplot as plt
import math
from scipy.fftpack import fft,ifft
class kalman_filter:
    def __init__(self,Q,R):
        self.Q = Q
        self.R = R
        
        self.P_k_k1 = 1
        self.Kg = 0
        self.P_k1_k1 = 1
        self.x_k_k1 = 0
        self.ADC_OLD_Value = 0
        self.Z_k = 0
        self.kalman_adc_old=0
        
    def kalman(self,ADC_Value):
       
        self.Z_k = ADC_Value
        
        #if (abs(self.kalman_adc_old-ADC_Value)>=60):
            #self.x_k1_k1= ADC_Value*0.382 + self.kalman_adc_old*0.618
        #else:
        self.x_k1_k1 = self.kalman_adc_old;
    
        self.x_k_k1 = self.x_k1_k1
        self.P_k_k1 = self.P_k1_k1 + self.Q
    
        self.Kg = self.P_k_k1/(self.P_k_k1 + self.R)
    
        kalman_adc = self.x_k_k1 + self.Kg * (self.Z_k - self.kalman_adc_old)
        self.P_k1_k1 = (1 - self.Kg)*self.P_k_k1
        self.P_k_k1 = self.P_k1_k1
    
        self.kalman_adc_old = kalman_adc
        
        return kalman_adc

class RC_filter:
    def __init__(self,sampleFrq,CutFrq):
        self.sampleFrq = sampleFrq
        self.CutFrq = CutFrq
        self.adc_old=0
       
        
    def LowPassFilter_RC_1order(self,Vi):
        RC = 1.0/2.0/math.pi/self.CutFrq 
        Cof1 = 1/(1+RC * self.sampleFrq)
        Cof2 = RC* self.sampleFrq/(1+RC* self.sampleFrq)
        Vo = Cof1 * Vi + Cof2 * self.adc_old	 	
        self.adc_old = Vo
        return Vo  

  
if __name__ == '__main__':
    noise_size = 1024
    noise_size_half = 512
    kalman_filter =  kalman_filter(0.01,0.5)
    RC_filter = RC_filter(400,5)
    noise_array =  np.random.normal(0, 2, noise_size)
    
        
    adc_value=[]
    
    for i in range(noise_size):
        adc_value.append(0)

    adc_value_noise = np.array(adc_value) + noise_array
    adc_filter_1=[]
    
    for i in range(noise_size):
        adc_filter_1.append(kalman_filter.kalman(adc_value_noise[i]))
    plt.plot(adc_value_noise,'r')
    plt.plot(adc_filter_1,'b')   

    #plt.plot(test_array)
    plt.show()
    adc_filter_2=[]
    plt.figure(1)
    for i in range(noise_size):
        adc_filter_2.append(RC_filter.LowPassFilter_RC_1order(adc_value_noise[i]))
    
    plt.plot(adc_value_noise,'r-')   
    plt.plot(adc_filter_2,'b')
    #plt.plot(test_array)
    plt.show()
    plt.figure(2)
    
  
    x = range(noise_size)
    y = noise_array
    #x=np.linspace(0,1,1400)      
    #设置需要采样的信号,频率分量有180,390和600
    #y=7*np.sin(2*np.pi*180*x) + 2.8*np.sin(2*np.pi*390*x)+5.1*np.sin(2*np.pi*600*x)
    
    yy=fft(x) #快速傅里叶变换 
    yreal = yy.real # 获取实数部分 
    yimag = yy.imag # 获取虚数部分 
    yf=abs(fft(y)) # 取绝对值 
    yf1=abs(fft(y))/len(x) #归一化处理 
    yf2 = yf1[range(int(len(x)/2))] #由于对称性,只取一半区间 
    xf = np.arange(len(y)) # 频率 
    xf1 = xf
    xf2 = xf[range(int(len(x)/2))] #取一半区间 
    """plt.subplot(221) 
    plt.plot(x[0:noise_size_half],y[0:noise_size_half]) 
    plt.title('Original wave') 
    plt.subplot(222) 
    plt.plot(xf,yf,'r')
    plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表 
              
    plt.subplot(223) 
    plt.plot(xf1,yf1,'g')
    plt.title('FFT of Mixed wave(normalization)',fontsize=9,color='r') """
    #plt.subplot(224) 
    plt.plot(xf2,yf2,'b') 
    plt.title('FFT of kalman_filter)',fontsize=10,color='#F08080') 
    plt.show()
    
    x = range(noise_size)
    y = adc_filter_2
    #x=np.linspace(0,1,1400)      
    #设置需要采样的信号,频率分量有180,390和600
    #y=7*np.sin(2*np.pi*180*x) + 2.8*np.sin(2*np.pi*390*x)+5.1*np.sin(2*np.pi*600*x)
    
    yy    = fft(x) #快速傅里叶变换 
    yreal = yy.real # 获取实数部分 
    yimag = yy.imag # 获取虚数部分 
    yf =abs(fft(y)) # 取绝对值 
    yf1=abs(fft(y))/len(x) #归一化处理 
    yf2= yf1[range(int(len(x)/2))] #由于对称性,只取一半区间 
    xf  = np.arange(len(y)) # 频率 
    xf1 = xf
    xf2 = xf[range(int(len(x)/2))] #取一半区间 
    """plt.subplot(221) 
    plt.plot(x[0:noise_size_half],y[0:noise_size_half]) 
    plt.title('Original wave') 
    plt.subplot(222) 
    plt.plot(xf,yf,'r')
    plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表 
              
    plt.subplot(223) 
    plt.plot(xf1,yf1,'g')
    plt.title('FFT of Mixed wave(normalization)',fontsize=9,color='r') """
    #plt.subplot(224) 
    plt.plot(xf2,yf2,'b') 
    plt.title('FFT of RC)',fontsize=10,color='#F08080') 
    plt.show()




  • 12
    点赞
  • 78
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: MFCC滑动平均滤波的实现代码可以通过使用C或C++语言来实现。具体实现方法是首先设置一个滑动窗口大小,然后使用移动平均算法来更新每个MFCC系数值。实现的代码如下: //设置滑动窗口大小 int window_size=10; //初始化统计变量 float sum[13]; for(int i=0;i<13;i++) { sum[i]=0; } //滑动窗口的开始 int start=0; //滑动窗口的结束 int end=window_size; //遍历每一帧 for(int i=0;i<data_length;i++) { //计算滑动窗口的和 for(int j=start;j<end;j++) { for(int k=0;k<13;k++) { sum[k]+=data[j][k]; } } //计算平均值并更新到MFCC系数中 for(int k=0;k<13;k++) { data[i][k]=sum[k]/window_size; sum[k]=0; } //更新滑动窗口 start++; end++; } ### 回答2: MFCC(Mel频率倒谱系数)是一种常用于语音信号处理和声音识别的特征提取方法。在MFCC的计算过程中,通常需要对信号进行滑动平均滤波,以平滑信号的频谱特征。 滑动平均滤波的实现代码如下: ```python def sliding_average_filter(signal, window_size): filtered_signal = [] for i in range(len(signal)): start = max(0, i - window_size // 2) end = min(len(signal), i + window_size // 2 + 1) average = sum(signal[start:end]) / (end - start) filtered_signal.append(average) return filtered_signal # 示例用法 signal = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] window_size = 3 filtered_signal = sliding_average_filter(signal, window_size) print(filtered_signal) ``` 上述代码中的`sliding_average_filter`函数实现了滑动平均滤波的功能。它接受两个参数:`signal`为输入信号,`window_size`为滤波窗口大小。函数会遍历输入信号的每一个点,并计算其前后一定范围内的信号均值作为滤波结果。滤波时,若窗口大小为奇数,则当前点为窗口中心;若窗口大小为偶数,则当前点为窗口右侧一半的起点。 在示例的代码中,输入信号为`[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]`,窗口大小为3。滑动平均滤波后得到的信号为`[2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 6.0]`。 滑动平均滤波可以有效平滑信号的频谱特征,对于MFCC特征提取等应用具有重要意义。根据实际需求,可以调整窗口大小和滤波方式等参数,以得到更好的滤波效果。 ### 回答3: MFCC(Mel频率倒谱系数)是一种常用于语音信号处理的特征提取算法,其核心是通过对语音信号进行傅里叶变换,然后将变换得到的能量谱映射到Mel频率刻度上,最后再对Mel频谱进行倒谱变换得到MFCC系数。 滑动平均滤波可以应用于MFCC特征提取过程中,以平滑特征系数的变化,使其更加稳定。下面是MFCC滑动平均滤波的实现代码: ```python import numpy as np def sliding_average_filter(data, window_size): filtered_data = [] for i in range(len(data)): if i < window_size: # 前几个数据直接添加到结果集中 filtered_data.append(data[i]) else: # 后续数据按窗口大小计算平均值 filtered_data.append(np.mean(data[i-window_size:i])) return filtered_data ``` 在上述代码中,`data`代表输入的MFCC系数数据,`window_size`为滑动窗口的大小。代码首先创建一个空列表`filtered_data`用于保存滤波后的数据,然后通过一个循环遍历输入数据。前`window_size`个数据直接添加到结果集中,然后从第`window_size`个数据开始,每次取窗口大小的数据,通过`np.mean()`函数计算其平均值,并将结果添加到结果集中。 使用以上代码示例,可以对MFCC系数进行滑动平均滤波处理,使其更加平滑和稳定,提高特征提取的效果。需要注意的是,在实际使用中,可以根据需要调整窗口大小以达到最佳滤波效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值