1、概述:
基本原理:
- 间隔(Margin):SVM试图找到一个超平面,这个超平面不仅能够区分不同的类别,而且具有最大的间隔。间隔是数据点到超平面的最近距离。
- 支持向量(Support Vectors):这些是距离超平面最近的数据点,它们决定了超平面的位置和方向。
支持向量机(SVM)是一种在机器学习领域广泛使用的监督学习模型,它通过找到数据点之间的最优超平面来进行分类或回归分析。以下是SVM算法的一些优缺点:
2、优点:
- 高维处理能力:SVM通过核技巧能够有效地处理高维数据集,即使在原始特征空间中数据不是线性可分的。
- 最大化间隔:SVM通过最大化数据点到决策边界的距离(间隔),提高了模型的泛化能力。
- 稳健性:SVM对于数据中的噪声和异常值具有较好的鲁棒性,因为它只关心支持向量,而不是整个数据集。
- 避免局部最优:由于SVM的优化问题是凸优化问题,因此解是全局最优解,不会陷入局部最小值。
- 小样本学习:SVM在小样本情况下也能表现良好,适合样本量较小的问题。
- 模型解释性:SVM的决策边界由支持向量定义,这使得模型相对容易解释。