【1.2.投资的收益和风险】

本文介绍了如何将多目标规划问题转化为单目标线性规划,以最大化总体收益并考虑风险度。通过MATLAB编程,进行循环搜索找到最优投资组合,当风险度a=0.006时,总体收益达到最大。接着,展示了如何利用MATLAB求解各个项目投资的最优金额,从而确定最佳投资策略。
摘要由CSDN通过智能技术生成

模型的建立与求解

多目标规划问题通过一定形式的改变可以化为单目标的线性规划。
m a x ∑ i = 0 n ( r i − p i ) x i , max\sum_{i=0}^{n} (r_{i}-p_{i})x_{i}, maxi=0n(ripi)xi,
s . t . { q i x i M ≤ a i = 1 , 2 , ⋯   , n , ∑ i = 0 n ( 1 + p i ) x i = M x i ≥ 0 , i = 1 , 2 , ⋯   , n 。 s.t.\begin{cases} \frac{q_{i}x_{i}}{M}\le a & i =1,2,\cdots,n, \\ \sum_{i=0}^{n}(1+p_{i})x_{i} =M & x_{i}\ge 0, i =1,2,\cdots,n。 \end{cases} s.t.{Mqixiai=0n(1+pi)xi=Mi=1,2,,n,xi0i=1,2,,n
由于matlab中只能使用min,所以在敲代码的时候需要把数学模型中的max改编成min.
m i n f = [ − 0.05 , − 0.27 , − 0.19 , − 0.185 , − 0.185 ] ⋅ [ x 0 , x 1 , x 2 , x 3 , x 4 ] T minf=[-0.05,-0.27,-0.19,-0.185,-0.185]\cdot [x_{0},x_{1},x_{2},x_{3},x_{4}]^{T} minf=[0.05,0.27,0.19,0.185,0.185][x0,x1,x2,x3,x4]T
s . t . { x 0 + 1.01 x 1 + 1.02 x 2 + 1.045 x 3 + 1.065 x 4 = 1 0.025 x 1 ≤ a 0.015 x 2 ≤ a 0.055 x 3 ≤ a 0.026 x 4 ≤ a x i ≥ 0 , i = 0 , 1 , ⋯   , 4 s.t.\begin{cases} x_{0}+1.01x_{1}+1.02x_{2}+1.045x_{3}+1.065x_{4}=1 \\0.025x_{1}\le a \\0.015x_{2}\le a \\0.055x_{3}\le a \\0.026x_{4}\le a \\x_{i}\ge0,i=0,1,\cdots,4 \end{cases} s.t. x0+1.01x1+1.02x2+1.045x3+1.065x4=10.025x1a0.015x2a0.055x3a0.026x4axi0,i=0,1,,4
由于a是任意给定的风险度,不同的投资者有不同的分享度,下面从a=0开始,以步长0.001进行循环搜索,由此可以使用MATLAB进行编程。
在这里插入图片描述

clc,clear
a=0;
hold on
while a<0.05
    c=[-0.05,-0.27,-0.19,-0.185,-0.185];
    A=[zeros(4,1),diag([0.025,0.015,0.055,0.026])];
    b=a*ones(4,1);
    Aeq=[1,1.01,1.02,1.045,1.065];
    beq=1;
    LB=zeros(5,1);
    [x,q]=linprog(c,A,b,Aeq,beq,LB);
    q=-q;
    plot(a,q,'*k');
    a=a+0.001;
end
xlabel('风险度变化a'),ylabel('总体收益Q')

综合分析,应该选择曲线的转折点作为最优投资组合,a=0.006, Q=0.20.
然后我们需要求出来每个项目需要投多少钱,就需要各个x求出来。
于是下面进行编程。

clc,clear
a=0.006;
    c=[-0.05,-0.27,-0.19,-0.185,-0.185];
    A=[zeros(4,1),diag([0.025,0.015,0.055,0.026])];
    b=a*ones(4,1);
    Aeq=[1,1.01,1.02,1.045,1.065];
    beq=1;
    LB=zeros(5,1);
    [x,q]=linprog(c,A,b,Aeq,beq,LB)
    q=-q

在这里插入图片描述
到这里给出总的金额的话,就可以具体根据比例关系求得每个项目需要投资的最优金额了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是数学系的小孩儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值