第三章:学习参数
本章的所有例子基于条件独立假设(iid)
构建概率图模型大致需要3个步骤:
- 定义随机变量,即图中节点
- 定义图的结构
- 定义每个局部分布的数值参数
设D为数据集,θ为图模型的参数,似然函数为 P ( D ∣ θ ) P(D|θ) P(D∣θ),即给定参数下观测数据集的概率,那么最大似然估计就是要找出参数θ。可以写作 θ ~ = a r g m a x θ P ( D ∣ θ ) \tilde{\theta}=argmax_{\theta}P(D|\theta) θ~=argmaxθP(D∣θ)
如果想要更准确地刻画θ,可以采用贝叶斯方法,这里需要知道参数的先验分布P(θ)。在这个例子中,在这个例子中就是找出 P ( D ∣ θ ) P ( θ ) P(D|\theta)P(\theta) P(D∣θ)P(θ)的最大值。这个过程叫做最大化后验概率
一个鸢尾花的例子:
x = read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", col.names = c("sepal_length", "sepal_width", "petal_length", "petal_width", "class"))
head