【读书笔记】概率图模型——基于R语言(三)

第三章:学习参数

本章的所有例子基于条件独立假设(iid)
构建概率图模型大致需要3个步骤:

  1. 定义随机变量,即图中节点
  2. 定义图的结构
  3. 定义每个局部分布的数值参数

设D为数据集,θ为图模型的参数,似然函数为 P ( D ∣ θ ) P(D|θ) P(Dθ),即给定参数下观测数据集的概率,那么最大似然估计就是要找出参数θ。可以写作 θ ~ = a r g m a x θ P ( D ∣ θ ) \tilde{\theta}=argmax_{\theta}P(D|\theta) θ~=argmaxθP(Dθ)
  如果想要更准确地刻画θ,可以采用贝叶斯方法,这里需要知道参数的先验分布P(θ)。在这个例子中,在这个例子中就是找出 P ( D ∣ θ ) P ( θ ) P(D|\theta)P(\theta) P(Dθ)P(θ)的最大值。这个过程叫做最大化后验概率
  一个鸢尾花的例子:

x = read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", col.names = c("sepal_length", "sepal_width", "petal_length", "petal_width", "class"))
head
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值