2、常见的张量分解算法(Completion by TR decomposition)
3、基于秩最小的张量填充算法(rank minimization-based tensor completion)
一、本文创新点
之前的张量补全算法大致分为两类:一是基于低秩结构(添加各种范数进行约束),一种是基于张量分解的方法。而这篇文章完美结合了这两种算法,在张量分解的因子上添加核范数,这一招果然妙呀,作者想到了分解后的因子应该也具有低秩结构,这使得SVD操作在更小的范围中进行,将大大减少计算量。这项工作完成地非常不错。
1、建立了多线性张量秩与TR因子秩之间的理论关系,使得低秩约束可以隐式地在TR潜空间上进行。
2、进一步利用核范数对矩阵进行正则化,使我们的算法总能得到一个稳定的解
3、提出了一种基于ADMM的优化算法
二、符号和定义
1、TR-decomposition
2、常见的张量分解算法(Completion by TR decomposition)
weighted CP (Acar et al. 2011)、weighted Tucker (Filipovic and Juki´c 2015)
TRWOPT (Yuan et al. 2018)、TRALS (Wang, Aggarwal, and Aeron 2017)
其中TRWORT和TRALS使用相同的优化模型;
这两种方法都使用梯度下降的方法进行优化,速度较快,但缺点就是必须对秩进行估计,这限制了算法的高效性。