例子數據來源
https://msu.edu/course/stt/200/melfi/mtbdata/Exh_qc.MTW
(以下拷貝來源)
Z 控制图
Z 控制图中的每个数据点 zi
MR 控制图
每个组中的每个数据点 Ri(z 值的移动极差)。如果 i < w,将不标绘 Ri,因为它未定义。
表示法
项 | 说明 |
---|---|
xi | 观测值 i |
μ | 该组的均值 |
σ | 该组的标准差 |
w | 移动极差的宽度 |
估计过程标准差
Minitab 提供了四种估计 σ(过程标准差)的方法。您应当根据特定过程/产品的属性选择估计方法。您还可以选择输入历史值。您需要对过程变异作出假设。
使用以下信息可帮助选择方法:
常量(合并所有数据)
此选项合并各个游程和部件的所有数据以获得 σ 的公共估计值。
如果无论测量的样本量如何,过程的所有输出都具有相同的方差,请使用此选项。
相对于样本量(合并所有数据,使用对数(数据))
此选项对数据取自然对数,合并所有游程和所有部件的变换数据,并获得变换数据的 σ 的公共估计值。在变异随测量的样本量增加而增加的情况下,自然对数变换可以稳定变异。
如果随着测量的样本量增加,方差相当恒定地增加,请使用此选项。
按部件(合并同一个部件/批次的所有游程)
此选项合并同一个部件的所有游程以估计该部件的 σ。
如果特定部件或产品的所有游程具有相同的方差,请使用此选项。
按游程(不合并)
此选项独立估计每个游程的 σ。
如果不能假定特定部件或产品的所有游程具有相同的方差,请使用此选项
=============================================================
這裏有幾個坑
組內標準差如何計算?
如何計算組的均值?
計算的精度?
組內標準差=組內極差平均值/Dx 由於x=2 所以 組內平均值=Rbar/D2=( (|x1-x2|+|x2-x3|)/2 ) /1.128
由於是根據 Grade分組,所有minitab的均值統計了所有B grade的值 即 (B1(x1+x2+x3) + B2(x4+x5+x6))/6
由於參與計算的過程數有效位爲小數點後三位,因此過程結果放大到6位.最後結果依然是小數點後三位.
計算好Z值後, MR相對就簡單多了 MR = Z(x+1)- Zx 其中x>=1