机器学习分类之监督学习
什么是监督学习?
利用已知类别的样本,训练学习得到一个最优模型,使其达到所要求性能,在利用这个训练所得模型,将所有的输入映射为相应的输出,对输出进行简单的判断,从而实现分类的目的,即可以对未知数据进行分类。
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
监督学习就是利用已有的数据来培训机器,如果机器是一个名叫小小豪的孩子,那么监督学习就是让小小豪通过写练习,对答案这样一系列的培训来应对考试。
监督学习分为回归和分类
Supervised learning problems are categorized into “regression” and
“classification” problems. In a regression problem, we are trying to
predict results within a continuous output, meaning that we are trying
to map input variables to some continuous function. In a
classification problem, we are instead trying to predict results in a
discrete output. In other words, we are trying to map input variables
into discrete categories.
回归:反应了样本数据集中样本的属性值的特性,通过函数表达样本映射的关系来发现属性值之间的依赖关系。
用人话说就是利用样本得到一个函数,通过这个函数我们可以得到一些连续的输出。
举个🌰:预测房价,因为每个房子的面积,位置,楼层等等都是不一样的,而这些都会对房价造成影响,所以不同的房子价格都有一些差别。如果我们用机器和大量的样本算出一个函数,并且这个函数是有用的话,我们就可以在这个函数里代入各种各样想要被估值的房子。
分类:通过分类模型,将样本数据集中的样本映射到某个给定的类别中。
用人话说就是通过分类得到的输出是离散的。我们得到的结果是被分类的,被限定的。
举个🌰:比如我明天会不会暴富,答案只有会或者不会。