李航《统计学习方法》之EM算法及其推广

本文介绍了EM算法在概率模型参数估计中的应用,通过一个三硬币投掷实验的例子展示了如何在无法直接观测全部数据的情况下,利用EM算法进行极大似然估计。EM算法包括E步和M步,通过迭代逼近参数的最大似然估计值。文章还探讨了算法的敏感性、收敛条件以及在求解过程中Q函数的角色。
摘要由CSDN通过智能技术生成

EM算法是一种迭代方法,可以看作用坐标下降法来最大化对数似然估计下界的过程。

一、引入

(一)算法介绍

1、例题

有三枚硬币,ABC他们出现正面的概率分别是Π,p和q。进行如下投掷实验:先投掷A,再根据其结果选出硬币B或者C,A出现正面选择B,反面选择C,然后投掷选出的硬币,将掷出正面记作1,反面记作0,独立地重复N次实验(该问题n=10),观测结果如下:1,1,0,1,0,0,1,0,1,1

要求:只能观测到掷硬币的结果,不能观测到掷硬币的过程,问如何估计三硬币正面出现的概率,即三硬币模型的参数

P(y|λ)=ΣzP(y,z|λ)=ΣzP(z|λ)P(y|z,λ)
=在这里插入图片描述
y是观测变量,表示一次实验的测试结果是1或者0,随机变量z是隐变量,表示未观测到的掷硬币A的结果;λ=(Π,p, q)是参数模型。
在这里插入图片描述
在这里插入图片描述
求极大似然估计没有解析式,只有通过迭代的方法求解。EM可以完成该任务,

2、EM算法流程

(1)选取参数初值记作λ(0)=(Π(0),p(0),q(0)),通过迭代计算参数的估计值,直至收敛,EM算法的第i+1次迭代如下。
(2)E步在这里插入图片描述
(3)M步:计算模型参数的新估计值

在这里插入图片描述
在这里插入图片描述
🐖:Yj表示每一次的观测结果,每次计算都要把所有实验结果都代进迭代式
假设三个参数的初值都是0.5,那么对于y=1或者y=0来说,E步对应的值都是0.5
计算过程如下:
在这里插入图片描述

在这里插入图片描述

EM算法注意点

1、对初值敏感
2、当迭代过程中的两步的值无限趋近的时候,则停止迭代
3、E步求的是Q函数及其最大
4、M步的每次迭代使近似函数增大或达到局部极值。

(二)、算法导出

为什么EM算法能实现对观测数据的极大似然估计呢?通过近似求解观测数据的对数似然函数的极大化问题导出EM算法,可以看到EM算法的作用。
极大化
在这里插入图片描述
难点在于上式中包含未观测数据并由包含和的对数。
EM算法的核心是通过迭代逐步近似极大化L函数,每一次新的估计值都期望它可以让L值增大,逐步达到最大值。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值