快速部署大模型 Openwebui + Ollama + deepSeek-R1模型

背景

本文主要快速部署一个带有web可交互界面的大模型的应用,主要用于开发测试节点,其中涉及到的三个组件为

首先 Ollama 是一个开源的本地化大模型部署工具,提供与OpenAI兼容的Api接口,可以快速的运行大模型服务,我们用他来部署deepseek。
open-webui 提供了用户友好的 AI 界面(支持 Ollama、OpenAI API 等),且能够支持多种大模型,我们可以部署除了deepseek以外的其他模型,可以很方便的在模型之间切换等功能。

部署步骤

Ollama的部署

因为我这边是Mac系统,直接点击下载Ollama-darwin.zip,之后安装就可以了.
安装好后,运行ollama --version,显示如下:

ollama version is 0.6.3

运行 DeepSeek-R1模型

Ollama 支持下载部署 在 ollama lib以及 HuggingFace Modelscope的模型。
我们这里以ollama lib上的模型为例进行演示,运行如下命令就会下载并运行deepseek-r1模型

ollama run deepseek-r1:1.5b

这样我们就能够进行对话了

 ollama run deepseek-r1:1.5b
>>> Send a message (/? for help)

在这里可以进行提问了。
可以看到这里的交互界面很简单

运行 open-webui

在这里我们可以用conda新建一个虚拟环境

conda create --name python3.12 python=3.12

之后安装open-webui

pip install open-webui

启动open-webui

open-webui serve

浏览器输入http://localhost:8080/就可以访问并和deepseek进行交互了,默认是8080端口,也可以通过open-webui serve --port 8070这种方式指定端口去启动

注意第一次进去的时候,需要输入管理员密码。且需要等一段时间才能看到运行的模型
在这里插入图片描述

额外

我们可以直接访问deepseek提供的在线chat平台deepseek去聊天

### 使用Docker和Ollama在Windows上部署DeepSeek #### 三、环境准备 为了确保顺利运行,在Windows环境中需先安装Docker Desktop。这一步骤至关重要,因为后续操作均依赖于Docker容器化平台来管理应用及其服务[^2]。 #### 四、安装并配置Docker Desktop 对于尚未安装Docker Desktop的情况,建议访问[Docker官方网站](https://www.docker.com/products/docker-desktop/)获取最新版本,并遵循官方指南完成安装过程。安装完成后启动Docker Desktop应用程序,确认其正常工作后再继续下一步的操作。 #### 五、安装Ollama 针对Windows系统的用户来说,可以通过Chocolatey包管理器快速安装Ollama工具链: ```powershell choco install ollama-cli -y ``` 此命令会自动处理所有必要的依赖关系,简化了手动设置流程中的复杂度。安装完毕之后可通过`ollama --version`指令检验是否成功安装Ollama CLI客户端[^1]。 #### 六、验证Ollama安装情况 执行如下PowerShell脚本来测试刚刚安装好的Ollama能否正常使用: ```powershell $VersionInfo = (ollama version).Trim() if ($VersionInfo.StartsWith('v')) { Write-Host "Ollama 已正确安装, 版本号为 $VersionInfo" } else { Write-Error "未能识别到有效的 Ollama 安装!" } ``` 这段代码片段能够帮助判断当前计算机上的Ollama是否处于可用状态,并显示具体的版本信息作为参考依据。 #### 七、拉取DeepSeek镜像至本地仓库 利用预先设定好的Ollama工具集可以方便地从远程服务器下载所需的AI模型文件夹,这里以DeepSeek为例展示具体做法: ```bash ollama pull deepseek-r1 ``` 上述命令将会把指定名称的预训练模型加载进来以便稍后调用使用。值得注意的是,默认情况下这些资源会被保存在一个特定位置供以后查询或更新之用。 #### 八、启动Open Web UI界面 为了让开发者更直观便捷地管理和监控整个项目进展状况,推荐采用图形化的Web控制面板形式来进行交互式开发体验。有两种方式可供选择——一种是借助Python虚拟环境下pip工具直接安装;另一种则是更加简便高效的途径即运用前面提到过的Docker技术栈创建独立的服务实例: ##### 方法A: Python Pip Install 按照提示依次输入下列语句即可顺利完成软件包导入任务: ```bash pip install open-webui ``` 随后依照屏幕指示进一步完善其余参数选项直至结束为止。 ##### 方法B: Docker Compose Setup 如果倾向于第二种解决方案,则只需复制粘贴下方给出的一行简单的docker-compose.yml定义文档内容,再配合相应端口映射规则就能立即激活在线可视化编辑功能区: ```yaml version: '3' services: webui: image: ghcr.io/your-repo/openwebui:latest ports: - "7860:7860" ``` 接着打开终端窗口键入`docker compose up -d`让后台持续运行该进程而不影响其他日常活动。 #### 九、常见错误排查技巧 在整个搭建过程中难免会出现各种意外情形阻碍进度推进,以下是几种典型的故障现象连同对应的修复措施汇总表: | 错误描述 | 解决办法 | | --- | --- | | `docker.exe not found` | 确认已经正确设置了系统变量PATH指向Docker可执行程序所在目录 | | `failed to connect...` | 尝试重启电脑使新安装的应用生效或者检查防火墙设置允许相关网络连接请求通过 | | `image cannot be pulled` | 清理缓存重新尝试pull动作,亦或是切换不同的源地址重试 | 以上就是关于怎样在Windows平台上结合Docker与Ollama两大利器共同打造属于自己的个性化DeepSeek AI服务平台的整体介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值