hdu 1098 Ignatius's puzzle

     本题的题意是要找出最小的a使得任意的x都有f(x)=5*x^13+13*x^5+k*a*x能被65整除,然后我们可以运用数学归纳法进行推论。

     (1)可以容易地知道当x==0时,f(0)=0肯定能够被65整除的。

     (2)假设x = t时,f(x)=5*x^13+13*x^5+k*a*x也能被65整除

所以当x = t+1时,f(x)=5*x^13+13*x^5+k*a*x = 5*(t+1)^13+13*(t+1)^5+k*a*(t+1),由二项式公式可以知道,要使f(t+1)也能被65整除,那么只要使得5+13+k*a能被65整除即可,所以接下来就是要找出最小的a使得5+13+k*a能被65整除。

 

     根据求余的性质(5+13+k*a)%65 == 0即(k*a)%65==47,也就是(k%65) * (a%65) == 47,所以可以轻易的看出a是有周期变化的,如果a从0到64都不能使得(k*a)%65==47,那么肯定是无解了,否则输出第一个出现的a即刻。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值