本题的题意是要找出最小的a使得任意的x都有f(x)=5*x^13+13*x^5+k*a*x能被65整除,然后我们可以运用数学归纳法进行推论。
(1)可以容易地知道当x==0时,f(0)=0肯定能够被65整除的。
(2)假设x = t时,f(x)=5*x^13+13*x^5+k*a*x也能被65整除
所以当x = t+1时,f(x)=5*x^13+13*x^5+k*a*x = 5*(t+1)^13+13*(t+1)^5+k*a*(t+1),由二项式公式可以知道,要使f(t+1)也能被65整除,那么只要使得5+13+k*a能被65整除即可,所以接下来就是要找出最小的a使得5+13+k*a能被65整除。
根据求余的性质(5+13+k*a)%65 == 0即(k*a)%65==47,也就是(k%65) * (a%65) == 47,所以可以轻易的看出a是有周期变化的,如果a从0到64都不能使得(k*a)%65==47,那么肯定是无解了,否则输出第一个出现的a即刻。