GKStateMaching

GKStateMaching

一个有限状态机集合,包含有特定逻辑和规则去处理逻辑间的过渡。

概括

在Gameplaykit框架中,GKState的子类定义了每一种状态和状态间过渡的规则,使用了GKStateMachine实例可以去集中管理每一个独立的状态。这个状态机系统提供了方法,可以规划安排那些状态依赖的行为,当进入某个状态时,离开某个状态时,或者周期性实现某个状态逻辑(例如不同状态播放不同帧动画)。

你可以用GKStateMachine来控制各种类型的游戏,比如:

• 一个敌人角色可能会使用状态机拥有追逐,逃跑,死亡或者重生的状态,每一种状态控制一种行为,每种状态的过渡由玩家的行为改变或者时间的流逝所改变。

• 使用状态机来控制游戏的菜单开始,暂停,失败等状态,其中每个决定哪些UI元素显示和其他游戏元素运行。

构建一个状态机GKStateMachine,首先要定义明确的GKState状态子类来构建每一种可能发生的状态,在每个状态类中isValidNextState: 方法决定了哪些状态可以进行过渡。然后,通过构造GKState状态类的实例并将它们传递给创建状态机中列出的方法之一,创建一个状态机对象。最后设置一个motion来选择一个最初的状态,使用enterState:
 方法进行设置。

定义状态依赖的行为,在每一个GKState子类中重写didEnterWithPreviousState: 方法,updateWithDeltaTime: 方法和willExitWithNextState: 方法。

• 状态机会在一个状态改变时通知当前GKState实例,使用didEnterWithPreviousState: 和willExitWithNextState: 方法在状态改变时执行行为。例如,进入“逃离状态”的敌方人物可能会改变其外观,以表示被玩家工具。

• 当你使用一个状态的updateWithDeltaTime:  方法时,状态机也会对当前状态的updateWithDeltaTime:  发送消息,使用这个方法更新每一帧的代码。例如,追击状态中的敌方人物可以更新其位置以追击玩家,逃离状态的敌人可以更新其位置以躲避玩家。

Topics

创建状态机(Creating a State Machine)

- initWithStates:
通过特定的状态数组创建状态机。

+ stateMachineWithStates:

通过特定的状态数组创建状态机。

与状态相关的方法(Working with States)

currentState

状态机中当前的状态。

- canEnterState:

返回一个布尔值,判断是否能是一个有效状态可以过渡。

- enterState:

状态机尝试从当前状态过渡到指定状态。

- stateForClass:

通过指定类型返回相对应的状态。

- updateWithDeltaTime:

当前状态对象调用的updateWithDeltaTime: 方法。

关系

继承

NSObject



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值