密歇根大学Python 系列之三:Python 数据科学应用项目

Python在数据科学领域的应用已经成为了趋势,同时也在不断地发展和演化。对于从事数据科学相关工作的从业者来说,熟练掌握Python已经成为了必备技能之一。而对于其他从业者来说,了解Python在数据科学领域的应用也可以帮助他们更好地理解数据科学。

Python具有各种能力,成为一种灵活的语言,易于编码或编程,它可以进行各种极难的数学处理,这是数据科学编程的需要。Python编程语言有一个庞大的用户社区,他们在上面工作或使用它,它既用于科学计算,也用于一般计算。

 在国内,有人尝试使用Python 进行了有趣和实用的数据科学应用:

  1. 股市预测:使用Python来预测股市。对于初学者来说,这是一个很棒的项目,因为它不需要大量数据。
  2. 使用卷积神经网络对图像进行分类:使用卷积神经网络对图像进行分类。对机器学习感兴趣的人来说,这是一个很棒的项目。
  3. 预测房价:对房地产经纪人来说,预测房价很重要也很困难,因为许多因素都会影响房价。然而,有了正确的数据和一点 Python 编程,就可以创建一个预测房价的模型。第一步是收集近期房屋销售的数据,包括售价、面积、卧室和浴室数量等信息,第二步是对数据进行清理,通过机器学习模型来预测未来的房价变化。

密歇根大学专业的5门Python应用数据科学专项课程在MOOC平台知名度很高,已有超过100万注册学习。你可以学到:(1)推论统计分析;(2)辨别数据可视化的优劣;(3)应用机器学习来增强数据分析;(4)社交网络分析。你可以在MOOC学习平台免费注册学习。

1. Python 数据科学导论

 这个课程介绍Python应用数据科学的基础知识,包括:(1)了解内存数据库和操作CSV文件等技术;(2)用于数据科学常见Python功能和特性;(3)查询数据框架结构以进行清理和处理;(4)解释分布、抽样和t检验。

课程为期4周,每周7-13小时。课程主要内容包括:(1)使用Python进行数据操作的基础知识;(2)使用Pandas进行基本数据处理;(3)如何合并数据框架、生成汇总表、将数据分组为逻辑片段以及操作日期;(4)各种统计技术,如分布、抽样和t检验。

2. 在Python中应用绘制、图表和数据表示

 你将从这个课程学习数据可视化,重点是使用矩阵库进行报告和绘制图表。(1)是什么造成可视化是好的或不好;(2)创建基本图表的最佳方法;(3)确定最适合解决特定问题的功能;(4)使用matplotlb创建一个可视化工具。

课程为期4周,每周4-9小时。课程主要内容包括:(1)用于思考设计的工具和用于思考创建有效可视化的图形启发式工具;(2)深入研究基本的图表;(3)从简单的静态图像到交互式图表;(4)陈述一个可以使用数据集回答的研究问题,然后使用矩阵库创建一个可视化的,来解决你陈述的研究问题,并证明视觉效果是如何解决你的研究问题。

3. Python机器学习中应用

 你从这个课程学习应用机器学习,更多地关注技术和方法,而不是这些方法背后的统计数据。 (1)机器学习与描述性统计学有什么不同?(2)创建和评估数据集群;(3)创建预测模型的不同方法;(4)构建满足分析需求的特性。

课程为期4周,每周7-9小时。课程主要内容包括:(1)机器学习基础;(2)有监督的机器学习:监督学习方法进行分类和回归,学习模型的复杂性和泛化性能之间的联系等;(3) 评估和模型选择,理解和优化机器学习模型的性能;(4)更高级的监督学习方法,包括树的集合(随机森林,梯度增强树)和神经网络。

4. Python文本挖掘中应用

 你从这个课程学习文本挖掘和文本操作。包括:(1)如何在Python中处理文本;(2)基本的自然语言处理方法;(3)编写按主题将文档分组的代码;(4)用于操作文本的nltk框架。

课程为期4周,每周5-8小时。课程主要内容包括:(1)了解python如何处理文本,机器和人类的文本结构,以及用于操作文本的nltk框架;(2)常见的操作需求,包括正则表达式(搜索文本)、清理文本和准备供机器学习过程使用的文本;(3)对文本应用基本的自然语言处理方法,并演示如何完成文本分类;(4)探索更高级的方法来检测文档中的主题,并根据相似性对它们进行分组(主题建模)。

5. Python应用于社交网络分析

 你将通过使用NetworkX库的教程学习网络分析。(1)使用NetworkX库表示和操作网络数据;(2)分析网络的连通性;(3)衡量网络中一个节点的重要性或中心性;(4)预测网络的时间演变。

课程为期4周,每周5-8小时。课程主要内容包括:(1)理解什么是网络分析,为什么我们可以将现象建模为网络?(2)基于节点之间距离、可达性和路径的冗余性来测量分析网络的连通性;(3)探讨测量网络中一个节点的重要性或中心性的方法;(4)探讨网络随着时间的演变,并涵盖网络生成的模型和链路预测问题。

如果你想了解更多课程信息,请给我留言。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

moocsino

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值