深度学习图像预处理中为什么使用零均值化(zero-mean)

本文介绍深度学习中零均值化的概念及其实现方法,并通过数学原理阐述其如何提高神经网络权重参数的收敛速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习中,一般我们会把喂给网络模型的训练图片进行预处理,使用最多的方法就是零均值化(zero-mean) / 中心化,即让所有训练图片中每个位置的像素均值为0,使得像素值范围变为[-128,127],以0为中心。

举个例子,假设训练图片有5000张,图片大小为32*32,通道数为3,则用python表示如下:

x_train = load_data(img_dir)  # 读取图片数据 x_train的shape为(5000,32,32,3)
x_train = np.reshape(x_train, (x_train.shape[0], -1))  # 将图片从二维展开为一维,x_train 变为(5000,3072)
mean_image = np.mean(x_train, axis=0)  # 求出所有图片每个像素位置上的平均值 mean_image为(1, 3072)
x_train -= mean_image  # 减去均值图像,实现零均值化

这样做的优点是为了在反向传播中加快网络中每一层权重参数的收敛。为什么能加快呢?李飞飞的cs231n课程中给出了很好的解释。
这里写图片描述
我们来看一下神经网络中的计算过程,如上图所示通常每一层的计算公式都可以表示成上面这个式子。假设上游返回的梯度为L,运用链式法则,反向传播时权重的梯度可以表示如下:

∂ L i ∂ w i = ∂ L i ∂ f ∂ f ∂ w i = ∂ L i ∂ f x i \frac{∂L_i}{∂w_i} = \frac{∂L_i}{∂f}\frac{∂f}{∂w_i} = \frac{∂L_i}{∂f}x_i wiLi=fLiwif=fLixi
这里写图片描述

假设图中蓝色箭头方向理想最优w向量,根据上述公式,我们可以想一想:

当x全为正或者全为负时,每次返回的梯度都只会沿着一个方向发生变化,即梯度变化的方向就会向图中红色箭头所示,一会向上太多,一会向下太多。这样就会使得权重收敛效率很低。

但当x正负数量“差不多”时,就能对梯度变化方向进行“修正”,使其接近上图中蓝色箭头的方向,加速了权重的收敛。

参考自:李飞飞深度学习课程cs231n

解释得可能没有老师清楚 w(゚Д゚)w,跑-_-||

### Zero-Mean 归一化 Zero-mean归一化是一种常用的数据预处理技术,其目的是使数据集中的特征具有零均值和单位方差。具体来说,在应用此方法时,对于每一个特征: 1. 计算该特征在整个训练集中所有样本上的平均值μ; 2. 对于每个样本的该特征减去上述计算得到的平均值μ; 3. 将上一步的结果除以该特征的标准差σ。 通过这种方式转换后的数据将呈现出标准正态分布特性[^3]。 ```python import numpy as np def zero_mean_normalization(data): mean = np.mean(data, axis=0) std_deviation = np.std(data, axis=0) normalized_data = (data - mean) / std_deviation return normalized_data ``` ### Quasi-Normalization 方法 Quasi-normalization 并不是一个严格定义的技术术语,但在某些上下文中可能指代一种近似标准化的方法。通常情况下,这可能是为了适应特定算法需求而设计的一种简化版或变体形式的归一化方式。例如,在一些场景下可能会采用线性缩放使得最小值映射到0最大值映射到1;而在其他场合则会保留原始尺度但调整中心位置使其接近零均值等策略来实现“准”归一化效果。 需要注意的是,“quasi-normalization”的确切含义取决于具体的文献资料或研究领域内的约定俗成说法,并不存在统一标准定义。 ### 应用场景对比 - **Zero-Mean Normalization**: 当机器学习模型对输入变量之间的量级差异敏感时(如支持向量机SVM),或者当希望消除不同维度间由于测量单位造成的不公平比较影响时,可以考虑使用zero-mean归一化。此外,在神经网络训练过程中也经常运用这种方法以加速收敛过程并提高泛化能力。 - **Quasi-Normalization**: 如果目标仅仅是让各个属性处于相似的数量级范围内而不必精确遵循统计学意义上的正态分布,则可以选择更加灵活简便的方式来进行quasi-normalization操作。这类做法特别适用于那些不依赖于概率密度函数假设的学习器,比如决策树、随机森林等基于规则归纳构建分类边界的模型。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值