题目链接:https://vjudge.net/problem/HDU-5253
连接的管道
老 Jack 有一片农田,以往几年都是靠天吃饭的。但是今年老天格外的不开眼,大旱。所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行灌溉了。当老 Jack 买完所有铺设在每块农田内部的管道的时候,老 Jack 遇到了新的难题,因为每一块农田的地势高度都不同,所以要想将两块农田的管道链接,老 Jack 就需要额外再购进跟这两块农田高度差相等长度的管道。
现在给出老 Jack农田的数据,你需要告诉老 Jack 在保证所有农田全部可连通灌溉的情况下,最少还需要再购进多长的管道。另外,每块农田都是方形等大的,一块农田只能跟它上下左右四块相邻的农田相连通。
Input
第一行输入一个数字T(T≤10)T(T≤10),代表输入的样例组数
输入包含若干组测试数据,处理到文件结束。每组测试数据占若干行,第一行两个正整数 N,M(1≤N,M≤1000)N,M(1≤N,M≤1000),代表老 Jack 有N行*M列个农田。接下来 N 行,每行 M 个数字,代表每块农田的高度,农田的高度不会超过100。数字之间用空格分隔。
Output
对于每组测试数据输出两行:
第一行输出:”Case #i:”。i代表第i组测试数据。
第二行输出 1 个正整数,代表老 Jack 额外最少购进管道的长度。
Sample Input
2
4 3
9 12 4
7 8 56
32 32 43
21 12 12
2 3
34 56 56
12 23 4
Sample Output
Case #1:
82
Case #2:
74
分析题目可知边的信息容易得到,可以用克鲁斯卡尔算法解决。
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int N =1005;
int map[N][N];
struct EdgeNode
{
int from;
int to;
int w;
} a[N*N*4];
int father[N*N];
int find(int x)
{
if(x != father[x])
return father[x] = find(father[x]);
return father[x];
}
int cmp(EdgeNode a,EdgeNode b)
{
return a.w < b.w;
}
int join(int n,int m)
{
int t1=find(n);
int t2=find(m);
if(t1!=t2)
{
father[t1]=t2;
return -1;
}
return 1;
}
int main()
{
int n,m,t;//这里n是点的个数,m是边的个数
scanf("%d",&t);
for(int k=1; k<=t; k++)
{
scanf("%d%d",&n,&m);
for(int i=0; i<n*m; i++)
father[i]=i;
int d=0;
for(int i=0; i<n; i++)
{
for(int j=0; j<m; j++)
{
scanf("%d",&map[i][j]);
if(i>0)
{
a[d].from=j+i*m;
a[d].to=j+(i-1)*m;
a[d].w=abs(map[i][j]-map[i-1][j]);
d++;
}
if(j>0)
{
a[d].from=j+i*m;
a[d].to=j+i*m-1;
a[d].w=abs(map[i][j]-map[i][j-1]);
d++;
}
}
}
sort(a,a+d,cmp);
int sum=0,len=0;
for(int i=0;i<d;i++)
{
if(join(a[i].from,a[i].to)!=1)
{
len++;
sum+=a[i].w;
}
if(len>=n*m-1)
break;
}
printf("Case #%d:\n",k);
printf("%d\n",sum);
}
return 0;
}