【论文阅读】Mutual consistency learning for semi-supervised medical image segmentation(MedIA 2022)

【论文阅读】Mutual consistency learning for semi-supervised medical image segmentation(MedIA 2022)

基于相互一致性学习的半监督医学图像分割

(一)为什么要做这个研究

现在的半监督学习分为两类:基于一致性和熵最小化。本文同时运用了这两个方法。
现在的模型没有对缺点进行充分处理。对只有少量标注的深度学习模型进行观察,发现这些模型趋势是:在ambiguous的区域,容易产生高不确定性和错误的输出。解决这个问题能够使得半监督训练更有效。
作者做了观察实验,发现(1)高不确定性的地方出现在有挑战性的区域,如交界处,整体一般能分割的很好,数据越多,重点改进的地方只有高不确定区域。(2)数据越多,不确定高的区域越少。

(二)本文解决什么问题

更多的关注无标签数据的challenging regions,预测uncertainty,利用不确定性,解决ambiguous,减少不确定性。
蒙特卡洛需要多次前向传播,而本方法不需要。

(三)怎么做?

MCNet(1)一个共享encoder和多个轻微不同的decoder(不同的上采样策略),不同的decoder决定模型的不确定性,确定hard regions。

  1. transposed conv 2) linear interpolation 3) nearest interpolation
    (2)mutual consistency constraint相互一致性约束
    在一个decoder的概率输出和其他decoder的soft伪标签。让模型产在这些有挑战的区域产生一致的结果。
    soft pseudo labels通过sharpening function转化。从伪标签中学习的能够产生熵低的结果,
    p ∗ ( y p r e d ∗ ∣ x ; θ ) = p ( y p r e d ∣ x ; θ ) ( 1 / T ) p ( y p r e d ∣ x ; θ ) ( 1 / T ) + ( 1 − p ( y p r e d ∣ x ; θ ) ) ( 1 / T ) p^*(y^*_{pred}|x;\theta)=\frac{p(y_{pred}|x;\theta)^{(1/T)}}{p(y_{pred}|x;\theta)^{(1/T)}+(1-p(y_{pred}|x;\theta))^{(1/T)}} p(ypredx;θ)=p(ypredx;θ)(1/T)+(1p(ypredx;θ))(1/T)p(ypredx;θ)(1/T)T为超参数,控制sharpening程度,但是同样也会带来噪声和干扰。
    L o s s = λ × ∑ i = 1 n L s e g ( p ( y p r e d ∣ x l ; θ s u b i ) , y l ) + β × L m c Loss=\lambda\times\sum^{n}_{i=1}L_{seg}(p(y_{pred}|x_l;\theta^i_{sub}),y_l)+\beta\times L_{mc} Loss=λ×i=1nLseg(p(ypredxlθsubi),yl)+β×Lmc有监督部分是dice无监督是MSE,无监督运用在有标签数据和无标签数据上。

(四)其他

1)dataset:LA,ACDC,pancreas-CT

2)本文是会议的extention,多增加了一个deccoder(上采样用了nearest interpolating);多用了个Pancreas 和ACDC数据集;多比较了五个方法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值