实用 Kaggle 随机森林 - 如何处理 nan & 数据太少怎么办

本文探讨了在Kaggle竞赛中如何处理数据中的nan值,通过填充均值或新增指示列来解决。同时,介绍了sklearn中随机森林的boostrapping优化技巧,通过修改内置函数增加训练数据量,以应对数据太少的问题,但需注意过拟合风险。
摘要由CSDN通过智能技术生成

1. nan 的处理

先讲一个真事:

在 Kaggle 的一个竞赛里面,是要求预测哪些大学的基金项目会得到批复而那些不会。随后一个参赛者通过其中某一列的 nan 与否特征的预测,得到了金奖。事后证明,这个学校在填入资料的时候,如果这项基金不会被批复,那么他们就不会继续填入更多信息。因此 nan 的填写与否反而由于 data leakage 的原因成为了这个竞赛里面最重要的特征。

但是呢,nan 又没有办法直接喂给机器学习模型。因此我们可以针对所有的数据列,做如下操作:

1. 选取所有的 数字列;

2. 如果该列的 nan 数目大于 1,则填充 fillna 为该列均值,或者任意制定数值;

3. 在整个 dataframe 后加入一列,记录该列的 nan 的 True/False 情况;

def fill_na(df, na_data={}):

    cols = df.select_dtypes(include='number')

    for col in cols: if df[col].isnull().sum() > 0:

        df[col+'_na'] = df[col].isnull()

        fillna = na_data[col] if col in na_data else df[col].median()

        df[col].fillna(fillna, inplace=True)   



%time fill_na(df_cat)

 

2. sklearn 中 boostrapping 的优化 —— 处理模型中数据太少的问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值