机器学习-Sklearn(第三版)Day2 随机森林

本文深入探讨了随机森林作为Bagging集成算法的原理,介绍了如何利用sklearn实现随机森林,并重点讲解了参数n_estimators、random_state、bootstrap和oob_score在模型性能和稳定性中的作用。通过实例展示了随机森林与单棵决策树的对比,以及随机森林在乳腺癌数据上的调参过程,揭示了调参的重要性及其对模型预测能力的影响。
摘要由CSDN通过智能技术生成

随机森林

集成算法概述

森林控制基评估器重要参数

随机森林是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树

分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器

参数 n_estimators

建立一片森林 

1.. 导入我们需要的包

%matplotlib inline  #将数据导入matplotlib库中
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine    #datasets是可以生成各种数据的模块

2.导入需要的数据集

wine = load_wine()
wine.data.shape  #红酒数据形状    
wine.target  #红酒数据集标签
#实例化
#训练集带入实例化后的模型去进行训练,使用接口是fit
#使用其他接口将测试集导入我们训练好的模型,去获取我们希望获取的结果(socre,Y_test)

sklearn建模的基本流程

#导入库
from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
#实例化
clf = DecisionTreeClassifier(random_state=0)
rfc = RandomForestClassifier(random_state=0)
#导入训练集训练
clf = clf.fit(Xtrain,Ytrain) 
rfc = rfc.fit(Xtrain,Ytrain)
#查看精确性
score_c = clf.score(Xtest,Ytest)
score_r = rfc.score(Xtest,Ytest)
#打印结果
print("Single Tree:{}".format(score_c)
     ,"Random Forest:{}".format(score_r)
     )

复习:  “字符串{ }” . format:(此内容是换括号里的内容)

复习:交叉验证

#交叉验证:是数据集划分为n分,依次取每一份做测试集,每n-1份做训练集,多次训练模型以观测模型稳定性的方法
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt

rfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10)

clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf,wine.data,wine.target,cv=10)

plt.plot(range(1,11),rfc_s,label = "RandomForest")
plt.plot(range(1,11),clf_s,label = "Decision Tree")
plt.legend()
plt.show()

画出随机森林和决策树在十组交叉验证下的效果对比

cfc_l = []
clf_l = []  #建列表放数据

for i in range(10):
    rfc = RandomForestClassifier(n_estimators=25)
    rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10).mean()
    rfc_l.append(rfc_s)
    clf = DecisionTreeClassifier()
    clf_s = cross_val_score(clf,wine.data,wine.target,cv=10).mean()
    clf_l.append(clf_s)
    
plt.plot(range(1,11),rfc_l,label = "Random Forest")
plt.plot(range(1,11),clf_l,label = "Decision Tree")
plt.legend()
plt.show()

随机森林的本质是一种装袋集成算法(bagging),装袋集成算法是对基评估器的预测结果进行平均或用多数表决 原则来决定集成评估器的结果。

random_state

的红酒例子中,我们建立了25棵树,对任何一个样本而言,平均或多数表决 原则下,当且仅当有13棵以上的树判断错误的时候,随机森林才会判断错误。单独一棵决策树对红酒数据集的分类 准确率在0.85上下浮动,假设一棵树判断错误的可能性为0.2(ε),那20棵树以上都判断错误的可能性是:

其中,i是判断错误的次数,也是判错的树的数量,ε是一棵树判断错误的概率,(1-ε)是判断正确的概率,共判对 25-i次。采用组合,是因为25棵树中,有任意i棵都判断错误。 

import numpy as np
from scipy.special import comb
np.array([comb(25,i)*(0.2**i)*((1-0.2)**(25-i)) for i in range(13,26)]).sum()

bootstrap & oob_score

bootstrap就是用来控制抽样技术的参数,bootstrap参数默认True,代表采用这种有放回的随机抽样技术,如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True,训练完毕之后,我们可以用 随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果

 机器学习中调参的基本思想

机器学习-Sklearn-02(随机森林)

学习2

随机森林在sklearn中的实现

1 概述

1.1 集成算法概述

集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型的建模结果。

集成算法的目标:
集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或分类表现。

多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器(base estimator)。通常来说,有三类集成算法:装袋法(Bagging),提升法(Boosting)和stacking(不常用)。
机器学习-Sklearn-02(随机森林)
装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结果。装袋法的代表模型就是随机森林

提升法中,基评估器是相关的,是按顺序一一构建的。其核心思想是结合弱评估器的力量一次次对难以评估的样本进行预测,从而构成一个强评估器。提升法的代表模型有Adaboost和梯度提升树

1.2 sklearn中的集成算法

sklearn中的集成算法模块ensemble

机器学习-Sklearn-02(随机森林)
集成算法中,有一半以上都是树的集成模型,可以想见决策树在集成中必定是有很好的效果。在这堂课中,我们会以随机森林为例,慢慢为大家揭开集成算法的神秘面纱。

复习:sklearn中的决策树

决策树是一种原理简单,应用广泛的模型,它可以同时被用于分类和回归问题。决策树的主要功能是从一张有特征和标签的表格中,通过对特定特征进行提问,为我们总结出一系列决策规则并用树状图来呈现这些决策规则

决策树的核心问题有两个,一个是如何找出正确的特征来进行提问,即如何分枝,二是树生长到什么时候应该停下

对于第一个问题,我们定义了用来衡量分枝质量的指标不纯度,分类树的不纯度用基尼系数信息熵来衡量,回归树的不纯度用MSE均方误差来衡量。

每次分枝时,决策树对所有的特征进行不纯度计算,选取不纯度最低的特征进行分枝,分枝后,又再对被分枝的不同取值下,计算每个特征的不纯度,继续选取不纯度最低的特征进行分枝。
机器学习-Sklearn-02(随机森林)
每分枝一层,树整体的不纯度会越来越小,**决策树追求的是最小不纯度。**因此,决策树会一直分枝,直到没有更多的特征可用,或整体的不纯度指标已经最优,决策树就会停止生长。

决策树非常容易过拟合,这是说,它很容易在训练集上表现优秀,却在测试集上表现很糟糕。为了防止决策树的过拟合,我们要对决策树进行剪枝,sklearn中提供了大量的剪枝参数。

2 RandomForestClassifier

机器学习-Sklearn-02(随机森林)
随机森林是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树,分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器。这一节主要讲解RandomForestClassifier,随机森林分类器。

2.1 重要参数

2.1.1 控制基评估器的参数

机器学习-Sklearn-02(随机森林)
这些参数在随机森林中的含义,和我们在上决策树时说明的内容一模一样,单个决策树的准确率越高,随机森林的准确率也会越高,因为装袋法是依赖于平均值或者少数服从多数原则来决定集成的结果的。

2.1.2 n_estimators

这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。

但是相应的,任何模型都有决策边界n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。

n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。

来建立一片森林吧

树模型的优点是简单易懂,可视化之后的树人人都能够看懂,可惜随机森林是无法被可视化的。所以为了更加直观地让大家体会随机森林的效果,我们来进行一个随机森林和单个决策树效益的对比。我们依然使用红酒数据集。

#1. 导入我们需要的包
%matplotlib inline
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine

#*****************************************************************
#2. 导入需要的数据集
wine = load_wine()
wine.data
机器学习-Sklearn-02(随机森林)
wine.target
机器学习-Sklearn-02(随机森林)
wine.data.shape
机器学习-Sklearn-02(随机森林)
#*****************************************************************
#3. 复习:sklearn建模的基本流程
#实例化
#训练集带入实例化后的模型去进行训练,使用的接口是fit
#使用其他接口将测试集导入我们训练好的模型,去获取我们希望获取的结果(score,Y_test)

from sklearn.model_selection import train_test_split

#sklearn中所有的特征和标签都是分开导入的
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)

clf = DecisionTreeClassifier(random_state=0)
rfc = RandomForestClassifier(random_state=0)

clf = clf.fit(Xtrain,Ytrain)
rfc = rfc.fit(Xtrain,Ytrain)

score_c = clf.score(Xtest,Ytest)
score_r = rfc.score(Xtest,Ytest)

print(“Single Tree:{}”.format(score_c)
,“Random Forest:{}”.format(score_r)
)
机器学习-Sklearn-02(随机森林)
#*****************************************************************
#4

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
随机森林是一种集成学习方法,它通过构建多个决策树来提高预测准确性。下面是sklearn随机森林的一些基本步骤、参数、属性和接口: 1. 基本步骤: 1.1 参数n_estimators:指定森林中树的数量。 1.2 建立森林:使用RandomForestClassifier()函数建立随机森林。 1.3 n_estimators的学习曲线:使用validation_curve()函数绘制n_estimators的学习曲线。 2. 重要的参数、属性、接口: 2.1 random_state:在划分训练集和测试集的类train_test_split、构建决策树的函数、构建随机森林时都可以使用该参数,它可以保证每次运行时得到的结果都是一样的。 2.2 estimators_:查看森林中每棵树的状况。 2.3 bootstrap & oob_score:bootstrap参数控制是否进行有放回的随机抽样,oob_score参数控制是否使用袋外样本来评估模型的准确性。 2.4 fit & score:fit()函数用于拟合模型,score()函数用于评估模型的准确性。 2.5 feature_importances_:查看每个特征的重要性。 2.6 apply:返回每个样本所在的叶子节点的索引。 2.7 predict:对新数据进行预测。 2.8 predict_proba:返回每个类别的概率。 3. 随机森林回归器: 3.1 重要的参数、属性、接口:与分类器类似,但是需要使用RandomForestRegressor()函数来建立随机森林回归器。 4. 机器学习中调参的基本思想: 泛化误差:模型在新数据上的误差。 标签和特征:标签是我们要预测的变量,特征是我们用来预测标签的变量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值