【OpenCV入门指南】第九篇 灰度直方图均衡化

上一篇《OpenCV第八篇灰度直方图》介绍对灰度直方图,本篇将介绍直方图的均衡化,这是图像增强的常用方法。直方图均衡化的数学原理这里就不介绍了,有兴趣可以查阅专业书籍。下面来看看灰度直方图均衡化的函数——cvEqualizeHist

 

一.cvEqualizeHist

函数功能:直方图均衡化,该函数能归一化图像亮度和增强对比度

函数原型:

/* equalizes histogram of 8-bit single-channel image */

CVAPI(voidcvEqualizeHist( const CvArr* src, CvArr* dst );

第一个参数表示输入图像,必须为灰度图(8位,单通道图)。

第二个参数表示输出图像

函数说明:

该函数采用如下法则对输入图像进行直方图均衡化:

  1:计算输入图像的直方图H

  2:直方图归一化,因此直方块和为255

  3:计算直方图积分,H'(i) = Sum(H(j)) (0<=j<=i)

  4:采用H'作为查询表:dst(x, y) = H'(src(x, y))进行图像变换。

 

在维基百科上对灰度直方图均衡化有个很好的对比,参见下图(网址:http://zh.wikipedia.org/zh-cn/%E7%9B%B4%E6%96%B9%E5%9B%BE%E5%9D%87%E8%A1%A1%E5%8C%96

可以看出直方图均衡化对图像增强的效果很不错,对图像细节部分能起到明显的突出增强效果。下面我们自己动手写一个灰度直方图均衡化的程序,代码如下:

//图像的灰度直方图均衡化
//By MoreWindows (http://blog.csdn.net/MoreWindows)
#include <opencv2/opencv.hpp>
#include <opencv2/legacy/compat.hpp>
using namespace std;
#pragma comment(linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"")
void FillWhite(IplImage *pImage)
{
	cvRectangle(pImage, cvPoint(0, 0), cvPoint(pImage->width, pImage->height), CV_RGB(255, 255, 255), CV_FILLED);
}
// 创建灰度图像的直方图
CvHistogram* CreateGrayImageHist(IplImage **ppImage)
{
	int nHistSize = 256;
	float fRange[] = {0, 255};  //灰度级的范围  
	float *pfRanges[] = {fRange};  
	CvHistogram *pcvHistogram = cvCreateHist(1, &nHistSize, CV_HIST_ARRAY, pfRanges);
	cvCalcHist(ppImage, pcvHistogram);
	return pcvHistogram;
}
// 根据直方图创建直方图图像
IplImage* CreateHisogramImage(int nImageWidth, int nScale, int nImageHeight, CvHistogram *pcvHistogram)
{
	IplImage *pHistImage = cvCreateImage(cvSize(nImageWidth * nScale, nImageHeight), IPL_DEPTH_8U, 1);
	FillWhite(pHistImage);

	//统计直方图中的最大直方块
	float fMaxHistValue = 0;
	cvGetMinMaxHistValue(pcvHistogram, NULL, &fMaxHistValue, NULL, NULL);

	//分别将每个直方块的值绘制到图中
	int i;
	for(i = 0; i < nImageWidth; i++)
	{
		float fHistValue = cvQueryHistValue_1D(pcvHistogram, i); //像素为i的直方块大小
		int nRealHeight = cvRound((fHistValue / fMaxHistValue) * nImageHeight);  //要绘制的高度
		cvRectangle(pHistImage,
			cvPoint(i * nScale, nImageHeight - 1),
			cvPoint((i + 1) * nScale - 1, nImageHeight - nRealHeight),
			cvScalar(i, 0, 0, 0), 
			CV_FILLED
			); 
	}
	return pHistImage;
}
int main( int argc, char** argv )
{	
	const char *pstrWindowsSrcTitle = "原图(http://blog.csdn.net/MoreWindows)";
	const char *pstrWindowsGrayTitle = "灰度图(http://blog.csdn.net/MoreWindows)";
	const char *pstrWindowsHistTitle = "直方图(http://blog.csdn.net/MoreWindows)";
	const char *pstrWindowsGrayEqualizeTitle = "灰度图-均衡化后(http://blog.csdn.net/MoreWindows)";
	const char *pstrWindowsHistEqualizeTitle = "直方图-均衡化后(http://blog.csdn.net/MoreWindows)";
	
	// 从文件中加载原图
	IplImage *pSrcImage = cvLoadImage("013.jpg", CV_LOAD_IMAGE_UNCHANGED);
	IplImage *pGrayImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);
	IplImage *pGrayEqualizeImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);
	
	// 灰度图
	cvCvtColor(pSrcImage, pGrayImage, CV_BGR2GRAY);
	// 直方图图像数据
	int nHistImageWidth = 255;
	int nHistImageHeight = 150; 
	int nScale = 2;  

	// 灰度直方图及直方图图像
	CvHistogram *pcvHistogram = CreateGrayImageHist(&pGrayImage);
	IplImage *pHistImage = CreateHisogramImage(nHistImageWidth, nScale, nHistImageHeight, pcvHistogram);

	// 均衡化
	cvEqualizeHist(pGrayImage, pGrayEqualizeImage);

	// 均衡化后的灰度直方图及直方图图像
	CvHistogram *pcvHistogramEqualize = CreateGrayImageHist(&pGrayEqualizeImage);       
	IplImage *pHistEqualizeImage = CreateHisogramImage(nHistImageWidth, nScale, nHistImageHeight, pcvHistogramEqualize);

	// 显示
	//显示代码….
	cvWaitKey(0);
	//回收资源代码…
	return 0;
}

运行结果如下所示:

可以看出,灰度直方图均衡化对灰度图的图像增强效果明显,读者可以尝试将灰度直方图均衡化加入到《OpenCV第六篇轮廓检测下》中,看看均衡化后对轮廓检测的提升效果。

 

 

由于人眼对彩色更为敏感,下一篇《OpenCV第十一篇 彩色直方图均衡化》将对彩色图像进行直方图均衡化,让大家对直方图均衡化有一个更加直观的了解。


 

OpenCV入门指南》系列文章地址:

http://blog.csdn.net/morewindows/article/category/1291764

转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/8364690

欢迎关注微博:http://weibo.com/MoreWindows

 

 

发布了156 篇原创文章 · 获赞 1070 · 访问量 841万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览