【OpenCV入门指南】第八篇 灰度直方图

本文介绍了OpenCV中灰度直方图的概念和应用,包括cvCreateHist和cvCalcHist函数的使用,并通过代码示例展示了如何计算和分析灰度直方图。直方图在图像处理中用于统计灰度信息,帮助理解图像的主要灰度分布。后续篇章将探讨直方图均衡化技术。
摘要由CSDN通过智能技术生成
               

  直方图(Histogram)又称柱状图、质量分布图,是一种统计报告图。直方图由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据类型,纵轴表示分布情况。在图像处理上,直方图是图像信息统计的有力工具。

  灰度直方图是指对图像的灰度信息进行统计,我们知道灰度图在图像处理中应用非常广泛,在前面的《OpenCV第三篇Canny边缘检测》、《OpenCV第五篇轮廓检测上》、《OpenCV第六篇轮廓检测下》均能找到灰度图的用武之地。因此灰度直方图具有较高的实用价值。下面先介绍灰度直方图的几个主要函数。

 

一.cvCreateHist

函数功能:创建直方图

函数原型:

CVAPI(CvHistogram*)  cvCreateHist( // Creates new histogram

  int dims,

  int* sizes,

  int type,

  float** ranges CV_DEFAULT(NULL),

  int uniform CV_DEFAULT(1)

);

参数说明:

第一个参数表示直方图维数,灰度图为1,彩色图为3。

第二个参数表示直方图维数的数目,其实就是sizes数组的维数。

第三个参数表示直方图维数尺寸的数组。

第四个参数表示直方图类型,为CV_HIST_ARRAY表示直方图数据表示为多维密集数组,为CV_HIST_TREE表示直方图数据表示为多维稀疏数组。

第五个参数表示归一化标识,其原理有点复杂。通常使用默认值即可。

函数说明:

直方图的数据结构如下所示:

typedef struct CvHistogram

{

    int     type;

    CvArr*  bins;

    float   thresh[CV_MAX_DIM][2];  /* For uniform histograms. */

    float** thresh2;                /* For non-uniform histograms. */

    CvMatND mat;     /* Embedded matrix header for array histograms. */

}CvHistogram;

 

二.cvCalcHist

函数功能:根据图像计算直方图

函数原型:

void  cvCalcHist(

  IplImage** image,

  CvHistogram* hist,

  int

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值