1.复色光:
概念阐述
从光学角度来说,光具有波粒二象性,不同频率的光在真空中传播速度相同,但在介质中传播速度可能不同,且会表现出不同的颜色。复色光就是包含了多种不同频率成分,进而呈现出多种颜色混合效果的光。日常生活中我们常见的很多光都是复色光,比如太阳光、白炽灯光等。
产生方式
-
光源直接产生:一些光源在发光过程中,会通过多种机制同时产生不同频率的光,从而形成复色光。例如,太阳内部的核聚变反应会产生各种频率的电磁波,在可见光范围内就包含了红、橙、黄、绿、蓝、靛、紫等多种颜色的光,这些光混合在一起就形成了我们看到的白色太阳光,所以太阳光是典型的复色光。
-
单色光混合:通过人为的方式将不同颜色的单色光混合在一起也可以得到复色光。在彩色显示技术中,利用红、绿、蓝三种基本颜色的单色光,按照不同的强度比例进行混合,可以产生几乎所有颜色的复色光,这就是三基色原理。彩色电视机、电脑显示屏等就是基于这个原理来显示各种丰富多彩的图像的。
特性
-
可分解性:复色光可以通过色散系统分解为其组成的单色光。当复色光通过三棱镜时,由于不同频率的光在三棱镜中的折射程度不同,会被分解成按一定顺序排列的各种单色光,形成光谱。比如,让太阳光通过三棱镜,就会在光屏上出现红、橙、黄、绿、蓝、靛、紫等颜色依次排列的彩色光带,这就是光的色散现象,充分证明了太阳光是复色光。
-
颜色多样性:复色光的颜色取决于其包含的单色光的种类和比例。不同的单色光组合和强度比例可以产生各种各样的颜色。例如,舞台灯光通过调节红、绿、蓝三种色光的强度比例,可以营造出五彩斑斓的灯光效果,为演出增添丰富的视觉氛围。
应用
-
光学仪器:在光谱分析仪器中,复色光经过样品后,某些特定频率的光会被样品吸收或散射,通过分析剩余复色光的成分和强度变化,就可以了解样品的化学组成和结构等信息。在天文观测中,通过对恒星发出的复色光进行光谱分析,能研究恒星的物质构成、温度、运动状态等。
-
艺术与设计:画家、设计师等利用复色光的原理,通过混合不同颜色的颜料或光线来创造出丰富多样的色彩效果,表达自己的创意和情感。在摄影中,摄影师也会利用自然光或人造光的复色特性,通过调整光线的颜色、强度和角度等,来营造不同的拍摄氛围和效果。
2.光谱:
光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案
光谱的产生原理
-
物质中的原子、分子等微观粒子具有特定的能级结构。当它们吸收或发射能量时,会在不同能级之间跃迁。以原子为例,当原子受到外界能量激发时,其电子会从低能级跃迁到高能级,处于激发态的电子不稳定,会自发地从高能级跃迁回低能级,在这个过程中以光的形式释放出能量,由于不同能级之间的能量差是特定的,所以释放出的光具有特定的波长或频率,从而形成了特定的光谱线。
光谱的分类
-
发射光谱:是物体自身发光所形成的光谱,可分为连续光谱和明线光谱。连续光谱由炽热的固体、液体或高压气体发光产生,如太阳的光谱在可见光范围内近似为连续光谱,它包含了各种波长的光,看起来是连续的彩带。明线光谱则是由稀薄气体或金属蒸气等在高温激发下发光产生,它由一些分立的明亮谱线组成,每条谱线对应着原子或分子的特定能级跃迁,不同元素的明线光谱具有独特的谱线特征,如氢原子的发射光谱有著名的巴耳末系等谱线。
-
吸收光谱:当连续光谱的光通过某种物质时,物质中的原子、分子等会吸收特定波长的光,从而在连续光谱上形成一些暗线或暗带,这就是吸收光谱。例如,太阳光谱中的夫琅禾费线就是太阳大气中的各种元素对太阳光进行吸收而形成的吸收光谱,通过研究这些吸收线可以了解太阳大气的成分。
光谱的特性
-
波长与频率:波长和频率是描述光谱的两个重要物理量,它们之间的关系为,其中是光速,是波长,是频率。在真空中,不同波长的光都以光速传播,波长越长,频率越低;反之,波长越短,频率越高。在可见光范围内,波长从长到短依次对应红、橙、黄、绿、蓝、靛、紫等颜色,其中红光波长较长,频率较低,紫光波长较短,频率较高。
-
强度:光谱中不同波长的光具有不同的强度,它反映了该波长的光所携带的能量大小。强度的分布与光源的特性、物质的吸收和发射特性等因素有关。例如,在恒星的光谱中,不同元素的发射线强度不同,通过分析这些强度可以了解恒星的温度、化学成分等信息。
光谱的应用
-
天文学:通过分析恒星、星系等天体的光谱,天文学家可以了解它们的化学成分、温度、速度、距离等重要信息。例如,利用多普勒效应,通过观察天体光谱中谱线的红移或蓝移,可以判断天体是在远离我们还是靠近我们,以及运动的速度大小,从而研究宇宙的膨胀、星系的运动等。
-
化学分析:光谱分析是化学领域中常用的分析方法之一,每种元素都有其独特的光谱特征,通过对物质发射或吸收光谱的测量和分析,可以确定物质的元素组成和含量。例如,原子吸收光谱法常用于测定金属元素的含量,红外光谱法可用于分析有机化合物的分子结构,通过观察分子对红外光的吸收情况,确定分子中存在的官能团等结构信息。
3.高光谱图像
定义
高光谱图像是将传统的二维图像信息与光谱信息相结合,在获取地物空间信息的同时,还能获取地物在连续光谱波段上的反射、辐射或散射等光谱信息,形成一个三维的数据立方体。其中,二维表示空间维度(通常是行和列),第三维表示光谱维度,即不同的波长或波段。
那我们举个例子来理解高光谱图像。假设你去一个水果摊买水果,普通的视力就像我们平时用的普通相机拍出来的照片,只能看到水果的颜色、形状,比如知道这是苹果、那是香蕉,苹果是红的,香蕉是黄的。但是如果你有一双 “超级眼睛”,这双眼睛就相当于能拍摄高光谱图像的设备。用这双 “超级眼睛” 看水果,你能看到的就远远不止颜色和形状了。你能看到苹果表皮上每一种化学物质分布的情况,比如糖分集中在哪里,有没有农药残留,甚至能看出苹果内部有没有开始变质;对于香蕉,你能知道它的成熟度到底有多高,里面的淀粉转化成糖分的程度怎么样了。这就是高光谱图像的厉害之处,它能比普通的图像看到更多更细致的信息,把物体的各种特征都 “揪” 出来,让我们对物体有更深入、更全面的了解,在很多领域都能发挥大作用,比如在农业里判断农作物的生长情况,在医学上辅助诊断疾病,在安防领域识别一些隐藏的危险物品等等
特点
-
光谱分辨率高:高光谱图像具有很窄的波段宽度和很丰富的波段数量,一般有几十到几百个连续的波段。相比之下,传统的多光谱图像通常只有几个到十几个波段。例如,多光谱卫星 Landsat 的传感器一般有 7 - 8 个波段,而高光谱传感器如 AVIRIS 则可以有多达 224 个波段,能够精细地捕捉到地物在不同波长下的光谱特征差异。
-
图谱合一:高光谱数据同时包含了空间信息和光谱信息。它既可以像传统图像一样展示地物的形状、大小和空间分布,又能通过光谱曲线反映每个像元所对应地物的物质组成和物理特性,实现了图像与光谱的有机融合。
-
数据量大:由于包含大量的波段信息和空间信息,高光谱图像的数据量通常非常大。一幅中等分辨率的高光谱图像数据量可能达到几百 MB 甚至 GB 级别,对数据的存储、传输和处理都提出了较高的要求。
工作原理
高光谱成像系统通过光学系统将目标场景的光信号分解成不同波长的光谱成分,并由探测器阵列对每个波长的光信号进行探测和量化,最终形成高光谱图像数据。在这个过程中,不同地物由于其化学成分、物理结构等的差异,会对不同波长的光产生不同的吸收、反射或发射特性,这些特性被高光谱成像系统捕捉并记录下来,成为区分和识别地物的重要依据。
应用领域
-
遥感领域:在地质勘探中,通过分析高光谱图像的光谱特征,可以识别不同的岩石和矿物类型,帮助寻找矿产资源;在农业监测方面,可用于监测农作物的生长状况、病虫害情况、土壤肥力等;在环境监测中,能够对水体污染、大气成分、植被覆盖变化等进行有效监测。
-
医学领域:高光谱成像技术可用于医学诊断,如对皮肤癌、乳腺癌等疾病的早期检测和诊断,通过分析组织的光谱特征来发现病变;还可用于手术导航,帮助医生更准确地识别病变组织和正常组织的边界。
-
食品检测领域:可以检测食品的品质和安全,如水果的成熟度、肉类的新鲜度、食品中的添加剂和污染物等,通过分析食品在不同波长下的光谱反射或吸收特性,快速、无损地获取食品的内部信息。