五、数据治理平台架构

数据治理平台架构图核心思想:

数据治理平台架构图描绘了一个数据资产平台,旨在帮助企业有效地管理和利用其数据资产。平台架构采用模块化设计,包括数据资产使用、数据资产分析、数据资产模型设计、数据资产管理/编目和数据资产采集等核心功能模块。

数据治理平台架构图
数据治理平台架构图

从上到下,从左到右,依次解析:

1.应用层 (最上层)

  • 企业全局数据资产: 强调平台管理的是企业所有的数据资产,而非单一部门或应用的数据。

  • 升级影响: 评估系统升级可能对数据资产产生的影响,保障数据的稳定性和可靠性。

  • 数据问题定位: 帮助用户快速定位数据相关的问题,例如数据错误、缺失等。

  • 辅助开发: 为数据应用的开发提供支持,例如提供数据接口、API等。

2.数据资产使用 (第二层)

  • 数据资产地图: 以可视化的方式展示企业数据资产的分布和关系,帮助用户快速了解数据全貌。

  • 数据资产统计: 统计数据资产的数量、类型、大小等信息,帮助用户了解数据资产的整体情况。

  • 数据资产检索: 提供灵活的检索功能,帮助用户快速找到所需的数据资产。

  • 资产使用情况: 跟踪数据资产的使用情况,例如访问频率、下载量等,为数据资产的评估和优化提供依据。

  • 影响分析: 分析数据资产变更可能产生的影响,例如对下游应用的影响。

  • 血统分析: 追踪数据的来源和流向,了解数据的加工过程和依赖关系。

  • 全链路分析: 分析数据从产生到使用的完整过程,帮助用户了解数据的生命周期。

  • 资产订阅: 用户可以订阅感兴趣的数据资产,及时获取数据更新和变更通知。

3.数据资产分析 (第二层)

  • 数据资产访问: 控制用户对数据资产的访问权限,保障数据安全。

  • 数据资产权限: 提供细粒度的数据权限管理,例如不同用户可以访问不同的数据。

  • 资产分析服务: 提供数据分析服务,例如数据挖掘、统计分析等,帮助用户发现数据价值。

  • 资产变更服务: 记录数据资产的变更历史,例如数据的修改、删除等。

4.数据资产模型设计 (第三层)

  • 元模型管理: 管理数据资产的元数据模型,包括元数据的定义、存储和访问。

  • 元模型设计器: 提供可视化的工具,帮助用户设计和编辑元数据模型。

  • 元模型版本管理: 管理元数据模型的不同版本,支持模型的升级和回滚。

  • 元模型关系维护: 维护元数据模型之间的关系,例如继承、关联等。

  • 元模型设计执行: 执行元数据模型的设计,例如生成数据库表结构、API接口等。

  • 元模型反向生成: 从已有的数据源反向生成元数据模型,简化元数据管理工作。

  • 图形模型框架: 提供图形化的方式展示元数据模型,方便用户理解和使用。

5.数据资产管理/编目 (第三层)

  • 数据资产维护: 维护数据资产的描述信息、标签等,保持数据资产信息的准确性和完整性。

  • 数据资产关系维护: 维护数据资产之间的关系,例如依赖关系、派生关系等。

  • 视图管理: 管理数据资产的视图,方便用户从不同的角度查看数据。

  • 编目管理: 对数据资产进行分类和编目,方便用户查找和使用。

  • 数据资产认责管理: 明确数据资产的责任人,确保数据资产的维护和管理。

  • 打标签: 为数据资产添加标签,方便用户检索和分类数据。

  • 数据资产质量管理: 管理数据资产的质量,例如数据的准确性、完整性、一致性等。

  • 版本管理: 管理数据资产的不同版本,支持数据的回溯和恢复。

  • 状态管理: 管理数据资产的状态,例如正常、停用等。

6.数据资产采集 (第四层)

  • 数据资产数据源管理: 管理数据资产的数据来源,例如数据库、文件、API等。

  • 采集模板管理: 管理数据采集的模板,定义数据采集的规则和流程。

  • 采集调度管理: 管理数据采集任务的调度,例如定时采集、增量采集等。

  • 采集日志管理: 记录数据采集的日志,方便用户监控和排查问题。

  • DB采集: 从数据库采集数据。

  • Hive采集: 从Hive数据仓库采集数据。

  • Excel采集: 从Excel文件采集数据。

  • 采集模板映射管理: 管理采集模板和数据源之间的映射关系。

  • 采集任务管理: 管理数据采集任务的执行情况,例如任务状态、进度等。

总结:

该架构图展示了一个功能完善的数据资产平台,它涵盖了数据资产管理的各个方面,从数据采集、模型设计、编目到使用和分析。通过该平台,企业可以更好地管理数据资产,提高数据利用效率,并为业务决策提供有力支持。

注意:

  • 这只是一个通用的数据治理平台架构图,具体实现会根据业务需求和技术选型而有所不同。

  • 图中各个组件的具体技术选型也只是示例,可以根据实际情况进行调整。

一.数据治理理论架构一.数据治理理论架构-CSDN博客
二.数据治理流程架构二.数据治理流程架构_数据资源目录、数据共享和开放目录、数据资产目录和数据服务目录 之间的关系-CSDN博客
三、数据治理应用开发整体架构三、数据治理应用开发整体架构-CSDN博客
四、数据湖应用平台架构四、数据湖应用平台架构-CSDN博客
五、数据治理平台架构五、数据治理平台架构-CSDN博客
六、数据资产平台功能架构六、数据资产平台功能架构-CSDN博客
七.智慧城市数据治理平台架构七.智慧城市数据治理平台架构-CSDN博客
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

34号树洞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值