Description
在xoy直角坐标平面上有n条直线L1,L2,…Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
3
-1 0
1 0
0 0
Sample Output
1 2
题解:先按斜率排序,将最小的两条线入栈,然后依次处理每条线,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈 ;对任意一个开口向上的半凸包,从左到右依次观察,发现其斜率不断增大,顶点的横坐标也不断增大。本题可用于理解dp优化中的维护上/下凸壳。
代码如下:
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#define ll long long
#define inf 0x7f7f7f7f
#define eps 1e-8
using namespace std;
int n,top;
struct line
{
double a,b;
int id;
}l[50005],stc[50005];
bool vis[50005];
int cmp(line a,line b)
{
if(fabs(a.a-b.a)<eps) return a.b<b.b;
return a.a<b.a;
}
double jie(line a,line b){return (b.b-a.b)/(a.a-b.a);}
void insert(line x)
{
while(top)
{
if(fabs(stc[top].a-x.a)<eps) top--;
else if(top>1 && jie(x,stc[top-1])<=jie(stc[top],stc[top-1])) top--;
else break;
}
stc[++top]=x;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&l[i].a,&l[i].b);
l[i].id=i;
}
sort(l+1,l+1+n,cmp);
for(int i=1;i<=n;i++) insert(l[i]);
for(int i=1;i<=top;i++) vis[stc[i].id]=1;
for(int i=1;i<=n;i++)
if(vis[i]) printf("%d ",i);
printf("\n");
return 0;
}