这是一个简化的示例来指导你如何开始这个项目。这个示例将分为两部分:微信小程序的前端代码和一个简单的后端服务示例。
微信小程序前端示例
微信小程序的前端主要负责展示界面和与用户交互。以下是一个简化的聊天界面示例代码。
index.wxml(简化的聊天界面)
<view class="container">
<view class="chat-window">
<!-- 循环展示聊天消息 -->
<block wx:for="{{messages}}" wx:key="index">
<view class="message" wx:if="{{item.from === 'user'}}">
<text class="user-message">{{item.text}}</text>
</view>
<view class="message" wx:if="{{item.from === 'bot'}}">
<text class="bot-message">{{item.text}}</text>
</view>
</block>
</view>
<view class="input-area">
<input type="text" placeholder="输入问题" bindinput="handleInput" value="{{inputValue}}"/>
<button bindtap="sendMessage">发送</button>
</view>
</view>
index.wxss(简化的样式)
.container {
display: flex;
flex-direction: column;
height: 100%;
}
.chat-window {
flex-grow: 1;
padding: 10px;
background-color: #f5f5f5;
overflow-y: auto;
}
.message {
margin-bottom: 10px;
}
.user-message {
text-align: right;
color: blue;
}
.bot-message {
text-align: left;
color: green;
}
.input-area {
display: flex;
padding: 10px;
}
input {
flex-grow: 1;
margin-right: 10px;
}
index.js(简化的逻辑处理)
Page({
data: {
messages: [],
inputValue: ''
},
handleInput(e) {
this.setData({
inputValue: e.detail.value
});
},
sendMessage() {
const message = this.data.inputValue;
if (message) {
// 添加用户消息到聊天窗口
this.addMessage(message, 'user');
// 发送请求到后端API
wx.request({
url: '你的后端API地址', // 替换为你的后端API地址
method: 'POST',
data: { query: message },
success: (res) => {
// 添加机器人回复到聊天窗口
this.addMessage(res.data.answer, 'bot');
},
fail: () => {
this.addMessage('无法获取回答', 'bot');
}
});
this.setData({ inputValue: '' }); // 清空输入框
}
},
addMessage(text, from) {
const messages = this.data.messages.concat({ text, from });
this.setData({ messages });
}
});
简单后端服务示例(Python Flask)
以下是一个使用Python Flask框架创建的非常基础的后端服务,它接受问题并返回一个固定的答案。
app.py
from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/ask', methods=['POST'])
def ask():
data = request.json
question = data.get('query')
answer = "这是一个固定的答案,你问的是:" + question
return jsonify({'answer': answer})
if __name__ == '__main__':
app.run(debug=True)
这个后端示例仅用于演示目的,实际应用中,你需要集成真实的人工智能服务来处理问题并生成答案。