点击我爱计算机视觉标星,更快获取CVML新技术
用更小更快的模型达到state-of-the-art效果的多任务学习
今天跟大家分享几天前arXiv上的一篇兼顾模型速度与性能的论文《Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations》,来自阿德莱德大学和墨尔本大学的研究人员在该文解决了在计算受限的设备上部署多任务模型的问题,取得了又好(达到state-of-the-art效果)又快(17毫秒每帧)同时实现语义分割与深度估计的效果。
作者信息:
在机器人上部署深度学习模型提取环境信息是一项艰巨的任务,即使是使用强大的通用的GPU。在这篇论文中,作者希望将语义分割与深度估计两个感知任务部署到机器人中,其主要解决了三个问题:
1)单模型多任务,在同一个深度学习网络中同时实现语义分割与深度估计;
2)实时计算;
3)非对称的标注数据,即并不是所有标注数据既有语义标注又有深度标注。
网络架构与算法设计思想