17毫秒每帧!实时语义分割与深度估计

这篇论文提出了一种使用Asymmetric Annotations的实时联合语义分割和深度估计方法,通过改进的MobileNet-v2骨干网和知识蒸馏技术,实现了在计算受限设备上的高效部署。实验表明,该模型在NYUDv2和KITTI数据集上达到了state-of-the-art的效果,同时保持了低延迟(12.8ms和16.9ms)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击我爱计算机视觉标星,更快获取CVML新技术


用更小更快的模型达到state-of-the-art效果的多任务学习

今天跟大家分享几天前arXiv上的一篇兼顾模型速度与性能的论文《Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations》,来自阿德莱德大学和墨尔本大学的研究人员在该文解决了在计算受限的设备上部署多任务模型的问题,取得了又好(达到state-of-the-art效果)又快(17毫秒每帧)同时实现语义分割与深度估计的效果。
作者信息:

在机器人上部署深度学习模型提取环境信息是一项艰巨的任务,即使是使用强大的通用的GPU。在这篇论文中,作者希望将语义分割与深度估计两个感知任务部署到机器人中,其主要解决了三个问题:
1)单模型多任务,在同一个深度学习网络中同时实现语义分割与深度估计;
2)实时计算;
3)非对称的标注数据,即并不是所有标注数据既有语义标注又有深度标注。

网络架构与算法设计思想

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值