

本文介绍 ECCV 2020 大规模实例分割挑战赛(LVIS Challenge)冠军方案,来自冠军团队 lvisTraveler 官方发布的报告:1st Place Solution of LVIS Challenge 2020: A Good Box is not a Guarantee of a Good Mask。

作者来自同济大学、清华大学、商汤科技。
该报告很短,除实验部分和参考文献后只有三页,但很具有启发性。
因为是算法比赛,所以该报告的重点是针对数据集提出问题,设计方案。尽管是针对数据设计算法,但因为该数据集很大,所以所提出的方案也均有普遍的参考价值。
LVIS Challenge 的特点:数据集很大,类别多(1200+类别),各类别分布不平衡长尾效应明显,另外mask标注很精细(超过200万个高质量实例分割标注)。
作者使用的算法基线:Mask-RCNN + HTC。
了解算法原理和开源实现请点击这里:

本文详细介绍了ECCV 2020大规模实例分割挑战赛(LVIS Challenge)冠军方案,该方案来自同济大学、清华大学和商汤科技的lvisTraveler团队。团队采用了Mask-RCNN + HTC作为基线模型,并通过Equalization Loss、Repeat Factor Sampling、自训练策略和创新的mask特征分配方法来应对数据集的长尾分布和不均衡问题。在微调阶段,他们提出了Classifier Balance和Balanced Mask Loss,解决了细长类别实例的分割挑战。最终,这些策略帮助团队赢得了比赛的第一名。
最低0.47元/天 解锁文章
1300

被折叠的 条评论
为什么被折叠?



