分享一篇新出的 CVPR 2021 轻量级网络论文 Lite-HRNet: A Lightweight High-Resolution Network ,大名鼎鼎的HRNet的升级版。
论文:https://arxiv.org/abs/2104.06403
代码:https://github.com/HRNet/Lite-HRNet
0 动机
HRNet有很强的表示能力,很适用于对位置敏感的应用,比如语义分割、人体姿态估计和目标检测。将ShuffleNet中的Shuffle Block和HRNet简单融合,能够得到轻量化的HRNet,作者将其命名为Naive Lite-HRNet。
Naive Lite-HRNet中存在大量的 卷积操作,作者提出名为Lite-HRNet的网络,在Lite-HRNet中使用conditional channel weighting模块替代 卷积,以进一步提高网络的计算效率。
1.Naive Lite-HRNet
ShuffleNetv2中的Shuffle Block结构如下图所示:
上图所示的结构中有2个分支,其中一个分支将输入特征进行
卷积、
depthwise卷积和
卷积,将该分支的输出和输入特征进行concat操作,然后进行shuffle操作,得到最终的输出特征。
Small HRNet的结构如下图所示:
相比于原始的HRNet,Small HRNet减少了网络的深度和宽度。Small HRNet中Stem部分包含2个步长为2的
卷积,每个Stage都包含一系列Residual Block和1个多分辨率融合模块。
为了构建计算量更小的Naive Lite-HRNet,作者使用Shuffle Block替换Stem中的第2个 卷积和所有的Residual Block,使用separable卷积替换多分辨率融合模块中的传统卷积。
2.Lite-HRNet
2.1 Conditional Channel Weighting
若某个卷积输入和输出feature map的通道数都为 ,则 卷积的时间复杂度为 , 的depthwise卷积的时间复杂度为 。在Shuffle Block中,当 时,2个 卷积的计算量要多于1个 的depthwise卷积,即 。
为进一步减少网络计算量,使用Conditional Channel Weighting操作代替Naive Lite-HRNet的Shuffle Block中的 卷积,形成新的网络,并将新的网络命名为Lite-HRNet。
对于Lite-HRNet中的第 个分支,Conditional Channel Weighting操作可表示为:
上式中的 是