Lite-HRNet:轻量级HRNet,FLOPs大幅下降

本文介绍了Lite-HRNet,它是HRNet的轻量化版本,旨在降低计算量。通过Conditional Channel Weighting模块,Lite-HRNet实现了比Naive Lite-HRNet更高的计算效率。此外,文章详细探讨了Cross-resolution Weight Computation和Spatial Weight Computation方法,以及在人体姿态估计和语义分割任务中的优秀性能。
摘要由CSDN通过智能技术生成

分享一篇新出的 CVPR 2021 轻量级网络论文 Lite-HRNet: A Lightweight High-Resolution Network ,大名鼎鼎的HRNet的升级版。

  • 论文:https://arxiv.org/abs/2104.06403

  • 代码:https://github.com/HRNet/Lite-HRNet

0 动机 

HRNet有很强的表示能力,很适用于对位置敏感的应用,比如语义分割、人体姿态估计和目标检测。将ShuffleNet中的Shuffle Block和HRNet简单融合,能够得到轻量化的HRNet,作者将其命名为Naive Lite-HRNet。

Naive Lite-HRNet中存在大量的 卷积操作,作者提出名为Lite-HRNet的网络,在Lite-HRNet中使用conditional channel weighting模块替代 卷积,以进一步提高网络的计算效率。

1.Naive Lite-HRNet

ShuffleNetv2中的Shuffle Block结构如下图所示:

上图所示的结构中有2个分支,其中一个分支将输入特征进行 卷积、 depthwise卷积和 卷积,将该分支的输出和输入特征进行concat操作,然后进行shuffle操作,得到最终的输出特征。

Small HRNet的结构如下图所示:

相比于原始的HRNet,Small HRNet减少了网络的深度和宽度。Small HRNet中Stem部分包含2个步长为2的 卷积,每个Stage都包含一系列Residual Block和1个多分辨率融合模块。

为了构建计算量更小的Naive Lite-HRNet,作者使用Shuffle Block替换Stem中的第2个 卷积和所有的Residual Block,使用separable卷积替换多分辨率融合模块中的传统卷积。


2.Lite-HRNet 

2.1 Conditional Channel Weighting

若某个卷积输入和输出feature map的通道数都为 ,则 卷积的时间复杂度为 的depthwise卷积的时间复杂度为 。在Shuffle Block中,当 时,2个 卷积的计算量要多于1个 的depthwise卷积,即

为进一步减少网络计算量,使用Conditional Channel Weighting操作代替Naive Lite-HRNet的Shuffle Block中的 卷积,形成新的网络,并将新的网络命名为Lite-HRNet。

对于Lite-HRNet中的第 个分支,Conditional Channel Weighting操作可表示为:

上式中的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值