关注公众号,发现CV技术之美
本文分享NeurIPS 2021论文『HRFormer: High-Resolution Transformer for Dense Prediction』,HRNet又出续作啦!由国科大&北大&MSRA联合提出高分辨率Transformer《HRFormer》,代码已开源!
详细信息如下:
论文链接:https://arxiv.org/abs/2110.09408
项目链接:https://github.com/HRNet/HRFormer
导言:
在本文中,作者提出了一种高分辨率 Transformer(High-Resolution Transformer ,HRT),用于学习密集预测任务的高分辨率表示,而原始的视觉Transformer 只能处理低分辨率表示,并且具有较高的显存和计算成本。
HRT利用了高分辨率卷积网络(HRNet)中引入的多分辨率并行设计,并且在非重叠的局部窗口上执行自注意,提高了显存和计算效率。此外,作者在FFN中引入卷积,以便在没有连接的图像窗口之间交换信息。
通过实验,作者证明了高分辨率Transformer 在人体姿势估计和语义分割任务上的有效性,例如,HRT在COCO姿势估计上比Swin Transformer高1.3AP,参数减少50%,FLOPs减少了30%。
01
Motivation
Vision Transformer(ViT)在ImageNet分类任务中表现出了良好的性能。许多后续工作通过知识蒸馏,采用更深层次的结构,直接引入卷积运算或者重新设计输入图像token等方法来提高分类精度。此外,一些研究试图扩展Transformer以解决更广泛的视觉任务,如目标检测、语义分割、姿势估计、视频理解等。本文的重点是构建用于密集预测任务的Transformer,包括姿势估计和语义分割。
Vision Transformer将图像分割为大小为16×16的图像块序列,并提取每个图像块的特征表示。因此,Vision Transformer的输出表示失去了密集预测所必需的细粒度空间细节。Vision Transformer仅输出单尺度特征表示,因此缺乏处理多尺度变化的能力。为了减少特征粒度的损失并对多尺度变化进行建模,作者提出了包含更丰富空间信息的高分辨率