数据不动模型动-联邦学习的通俗理解与概述

联邦学习是一种在保持数据分散的同时,多个客户端共同训练模型的机制,旨在实现机器学习的进步而不泄露敏感信息。它面临通信成本、系统异构性和统计异构性等挑战,解决方案包括局部更新、压缩方法和分布式训练。未来的进展涉及极端通信方案、自监督学习和个性化算法的优化。联邦学习特别关注Non-IID数据的处理,如个性化联邦学习、异构联邦学习、多任务及元学习以及用户选择和聚类策略。
摘要由CSDN通过智能技术生成

关注公众号,发现CV技术之美

联邦学习是一种机器学习设定,其中许多客户端(例如:移动设备或整个组织)在中央服务器(例如:服务提供商)的协调下共同训练模型,同时保持训练数据的去中心化及分散性。联邦学习的长期目标则是:在不暴露数据的情况下分析和学习多个数据拥有者(客户端或者独立的设备)的数据

进一步而言,联邦学习可定义为:Federated Learning = Collaborative Machine Learning without Centralized Training Data(没有集中训练数据的协作机器学习)[1]将机器学习的能力与将数据存储在云中的需求进行分离

e592927cad83ecbffff29fa2af0f9038.png

图1:Google联邦学习框架图(链接[1])

777473d549831e11d37156d3e4f0dd13.png

图2:Federated Learning Survey(链接[2])

接下来我们将从联邦学习中的挑战和未来进展剖析联邦学习。

 联邦学习中的挑战

1. Expensive Communication:联邦学习可能由大量设备(例如数百万部智能手机)组成,网络中的通信可能比本地计算慢许多数量级;网络中的通信可能比传统数据中心环境中的通信昂贵得多;为了使模型更适合联邦网络,因此有必要开发出通信高效的方法,在训练过程中迭代发送小消息或模型更新,而不是通过网络发送整个数据集

通信是在开发联邦网络的方法时需要考虑的一个关键瓶颈:具体而言,可分为以下三种解决方法:

(1)local updating methods本地更新方法;

(2)compression schemes压缩方法;

(3)decentralized training分布式训练

local updating methods:如下图所示,通过局部小批量更新可以降低通信代价,在每一轮通信中并行地在每台机器上应用可变数量的本地更新,从而使计算量与通信相比更加灵活。

f84f3be06d337377103fdb4b01fefe96.png

图3:关于多次局部小批次更新示意图(链接[3])

<
  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值