ICCV2023 | 更快、更灵活的 Transformer图像去雾网络

关注公众号,发现CV技术之美

本文分享 ICCV 2023 论文MB-TaylorFormer: Multi-branch Efficient Transformer Expanded by Taylor Formula for Image Dehazing,介绍更快、更灵活的 Transformer 图像去雾网络。

详细信息如下:6a121226f67564bba461c415b00a4784.png

  • 论文链接:https://arxiv.org/abs/2308.14036

  • 代码链接:https://github.com/FVL2020/ICCV-2023-MB-TaylorFormer

Abstract

本文介绍了一种新的多支路线性Transformer网络,称为MB-TaylorFormer,能够有效且高效的进行图像去雾任务。

MB-TaylorFormer有以下几个贡献:

  • 基于泰勒展开的线性Transformer网络,对像素间的长距离关系进行建模。通过引入了MSAR模块,以纠正对softmax-attention进行泰勒展开的误差;

  • 通过多支路和多尺度结构提取具有多尺度感受野、多层次语义信息和更灵活的感受野形状的Token;

  • 更优的性能、更少的计算量和更轻量的网络。

66eb56f41ad5d55ea02317d308c95c26.png

我们在多个去雾数据集(ITS、OTS、O-HAZE、Dense-Haze)上进行了实验。实验结果表明:MB-TaylorFormer以极低的参数量和计算复杂度优于其它SOTA方案。此外,去雨和去雪的实验结果表明MB-TaylorFormer同样有效。

Method

Network Architecture

ff1804844199f0219a09fb84475dfbb2.png

上图给出了本文所提出的MB-TaylorFormer三个核心模块:多尺度Patch Embedding(图2.b)、Taylor展开的自注意力(图2.c)和MSAR模块(图2.d)。

Multi-scale Patch Embedding

相比NLP领域,视觉Token在尺度上非常灵活。现有的工作在补丁嵌入中采用了固定卷积核大小的卷积,这可能导致视觉Token的单一尺度。为了解决这个问题,我们设计了一个新的多尺度Patch Embedding,具有三个特性:

  1. 多尺度的感受野

  2. 多级语义信息

  3. 灵活的感受野形状。

具体来说,通过设计多个并行的具有不同尺度卷积核的可变形卷积(DCN),我们使Patch Embedding能够生成粗糙和精细的视觉标记,以及具备灵活的表达能力,如下图所示。受到堆叠多层3*3卷积可获得更大感受野的启发,我们堆叠了几个小卷积核的DCN以获得更丰富的采样点。这不仅增加了网络的深度以提供多级语义信息,还有助于减少参数和计算负担。此外,我们还对DCN加入两个小的改动:

  • 通过对offset截断使得Token更关注局部。

  • 与深度可分离卷积的策略类似,我们提出了深度可分离和可变形卷积(DSDCN),它将 DCN 的各部分分解成Depthwis卷积与Pointwise卷积。

b5c225be2430c1cdaaaaf44dd2bec0ba.png

Taylor Expanded Multi-head Self-Attention

对于原始的Transformer的Self-attention表达式,如下所示:

716e2c51a4d128797876f7c3d0ef2e88.png

我们可以更一般的写成:

d82dd2167aabbf7bb876be356a14f809.png

其中,当f(x)=时,上式退化为Softmax-attention。现在对进行泰勒展开,得到:

16ae06e314abce3112176dbbc5afd636.png

忽略一阶泰勒展开的余项,可以写成:

c1747a6f9ff5c3d15efa36ab7a51a6e2.png

进一步,利用矩阵乘法结合律,得到具有线性计算复杂度的Self-attention计算公式:

9ea7228415eb345fc523daf68bbef200.png

我们将上式命名为Taylor expanded multi-head self-attention(T-MSA), 其计算浮点数计算量和原始Softmax-attention的浮点数计算量如下所示:

88ab9c66f6d28406b604cdd1c0c7d5e8.png

T-MSA包含以下三个优势:

  • 不受限于分窗导致的感受野下降

  • 进行全局像素的self-attention,而非通道之间的self-attention

  • 相比一般的的核函数方法在数值上更接近Softmax-attention

Multi-scale Attention Refinement

由于忽略泰勒展开余项不可避免的存在误差,而估计

将无法通过结合律使T-MSA的计算复杂度线性化。然而,余项与 Q 和 K 矩阵有关。考虑到图像具有局部相关性,如图2.d所示,我们学习 Q 和 K 矩阵的局部信息来校正不准确的输出 V ′,对于多头self-attention,我们concat

和 并通过多尺度分组卷积输出一个门控张量 。此外,conv-attention 模块允许TaylorFormer 更好地处理高频信息。

Experiments

Main Results

4d84e30e0dee27087e52fcab13609ee8.png

上表给出了MB-TaylorFormer和其它SOTA 模型的对比,从中可以发现:

  • 在合成数据集(SOTS-Indoor、SOTS-Outdoor)上,MB-TaylroFormer-B分别取得了40.71dB和37.42dB指标,MB-TaylroFormer-L分别取得了42.64dB和38.09dB指标,优于之前的SGID-PFF的38.52dB和30.20dB

  • 在真实数据集(O-HAZE和Dense-Haze)上,MB-TaylroFormer-L和MB-TaylroFormer-B分别以0.20dB和0.04dB优于之前的最佳方案Dehamer

  • 相比其他方案,MB-TaylorFormer-B具有更少的计算量和参数量,更高的指标。

82cc7fbf3d9aafcfe98c0955eebca2f5.png 55e3584aded3fbaff2264de315702f51.png

上图给出了合成数据集与真实数据上的视觉效果对比,可以看到:MB-TaylorFormer不仅在阴影处更好的恢复了细节,同时也有效的避免了伪影和色偏。

Ablation Studies

938cee7e7c0d2d3d5a0706dd4a615177.png

Study of multi-scale patch embedding and multi-branch structure

表2研究了不同的Patch Embedding和不同的支路数的影响,以单支路为baseline,我们可以发现:

  • 在相似的参数量和浮点数计算量下,多支路优于单支路

  • 多尺度感受野(Dilated Conv-P)相比单尺度感受野(Conv-P)带来了+0.35dB的提升

  • 多层次语义信息(Conv-S)相比不具有多层次语义信息(Dilated Conv-P)带来了+0.27dB的提升

  • 更灵活的感受野形状(DSDCN-S)相比固定的感受野形状(Conv-S)带来了+1.67dB的提升

Effectiveness of multi-scale attention refinement module

表3表明MSAR模块的设计能够以一种极轻量化的设计有效提升TaylorFormer的性能。

Comparison with other linear self-attention modules

表4通过T-MSA和多种不同的线性Transformer的对比,证明了T-MSA在去雾任务上的有效性。

Analysis of approximation errors

为了验证近似误差的影响,我们在在Swin的窗口内对softmax-attention进行泰勒展开,我们发现,对softmax-attention进行更高阶的展开能取得更好的性能,这可能时因为更优的数值近似和attention map具有更高的秩。

注:由于Swin的窗口取8,不存在N>>d的性质,因此,表5实验的MACs计算量不由矩阵乘法结合律得出。

实验室介绍

中山大学智能工程学院的前沿视觉实验室(FVL主页:https://fvl2020.github.io/fvl.github.com/ )由学院金枝副教授建设并维护,实验室目前聚焦在图像/视频质量增强、视频编解码、3D 重建和无接触人体生命体征监测等领域的研究。旨在优化从视频图像的采集、传输到增强以及服务后端应用的完整周期。我们的目标是开发通用的概念和轻量化的方法。为了应对这些挑战,我们将持之以恒地进行相关的研究,并与其他实验室进行合作,希望利用更多关键技术,解决核心问题。长期欢迎有志之士加入我们!

d3eb5fb1f9bf6da08e0ee166d5b62e80.jpeg

END

欢迎加入「图像去雾」交流群👇备注:去雾

a170adbdd0c38bd87dee0c7d73c3fa14.png

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值