如何让大模型更好地进行场景落地?

自ChatGPT模型问世后,在全球范围内掀起了AI新浪潮。

有很多企业和高校也随之开源了一些效果优异的大模型,例如:Qwen系列模型、MiniCPM序列模型、Yi系列模型、ChatGLM系列模型、Llama系列模型、Baichuan系列模型、Deepseek系列模型、Moss模型等。

5cb7e1af65457f54d59d3ab375f2c2d7.png

图片来自:A Survey of Large Language Models

并且在去年的一整年中,大多数人都在做底座通用大模型的搭建、垂直领域大模型预训练或微调等工作。虽然大模型基础能力得到了很大程度的提升,但是大模型距离真正地落地,其实还有一段艰难的路要走。

798d5f1891c3e237cb4d7b4a00f11f2b.png

图片来自:A Survey of Large Language Models

那么如何让大模型更好地进行场景落地,变得尤为重要。例如:如何优化通用大模型在领域上的效果,如何在某些场景中合理运用大模型,如何确保生成内容的稳定性和安全性,如何确保大模型可以在生产环境下稳定使用等。

cc1448446ee42433bf64d2a02b6059e9.jpeg

《大型语言模型实战指南》一书从大模型应用落地角度出发,系统梳理了大模型的相关技术,也帮助读者学习如何优化开源大模型在不同领域或场景中的效果,详细讲述了如何搭建角色扮演、信息抽取、知识问答、AI Agent等各种各样的大模型应用。

角色扮演

角色扮演应用主要利用大模型来模拟不同属性和风格的人物和角色,如游戏人物、动漫角色、网络小说的主角、电影人物、电视人物,以及历史名人等,旨在为用户带来更精细、更沉浸的交互体验。

cab7dd8fa11750b108bda0ec3f3a4169.png

图片来自:From Persona to Personalization: A Survey on Role-Playing Language Agents

为了确保用户获得最佳的体验,角色扮演应用不仅需模拟角色基本的对话流程,还要求大型语言模型深入理解角色的性格、故事背景、情感状态和行为模式,从而塑造出更为智能和生动的AI角色。可以应用在教育、游戏、咨询、创作、培训等多个领域中。

69000f400db2a49015b6cec070dfcb05.png

图片来自:Two Tales of Persona in LLMs: A Survey of Role-Playing and Personalization

Text2SQL

Text2SQL应用就是将自然语言查询转换为结构化查询语言(SQL)语句,以便从数据库中检索数据。随着大模型能力的逐步提高,解决Text2SQL的任务的方法也从传统深度学习模型转向大模型。并且各种平台系统的ChatBI、数据分析等功能,均离不开Text2SQL技术。

8e34e90b1acc644c084efc75160bb07d.png

图片来自:A Survey on Employing Large Language Models for Text-to-SQL Tasks

RAG

RAG(Retrieval-Augmented Generation,检索增强生成)技术,主要是在大型语言模型生成答案之前,通过检索方法从数据库中检索与用户查询相关的信息,利用这些相关信息指引大型语言模型进行答案生成。

RAG不仅极大程度地解决大型语言模型幻觉的问题,还提高模型回复的可靠性,提供生成答案的溯源信息,并且通过更新外部知识库实现对于知识的更新,无需重新训练模型,减少了模型训练更新的成本。目前,已经成为大型语言模型应用落地的重要方向。

RAG的整体流程主要涉及查询处理模块、内容检索模块、内容组装模块和大模型生成4个部分。当系统接收到用户查询Query进行初步处理后,利用向量检索模型从构建的向量知识库中检索到与其最相关的文档片段内容,再通过提示工程对用户查询Query和文档片段进行组装,最后利用大模型生成一个答案。

35c62d143a2e66432864bfecde6dda6d.png

图片来自:Retrieval-Augmented Generation for Large Language Models: A Survey

AI Agent

Agent是能够感知自身所处环境、自我决策并采取行动的人工智能实体。Agent技术的应用范围广泛且多样化,它们不仅仅是简单的自动化工具,而是能够在多个领域中提供高效和创新的解决方案。

  • 自动化和效率化的工具:从简单的数据查询到复杂的决策制定,它们都能显著减少人工操作的需求,优化工作流程。

  • 数据分析和处理:在处理大量数据和执行复杂分析方面,能够从海量数据中提取有价值的信息,为企业和研究者提供快速、准确的洞察。

  • 交互式用户体验:通过自然语言处理和上下文感知技术,提供个性化和互动的用户体验,从而改善用户交互。

  • 智能决策支持:作为决策支持工具,在分析复杂情况和提供基于数据的建议方面表现突出,特别是在商业、医疗和科研等领域。

  • 集成与扩展服务:通过API调用外部服务,为用户提供全面和扩展的功能。可以通过API调用外部服务,将不同的功能和信息源集成到一个统一的接口中。

  • 自适应学习和进化:能够根据用户反馈和行为模式不断进化,以更好地满足用户需求。

201d1fb639b5d421b4c4804d2c70851e.png

The Rise and Potential of Large Language Model Based Agents: A Survey

文章来源:IT阅读排行榜

本文摘编自《大型语言模型实战指南:应用实践与场景落地》,机械工业出版社出版,经出版方授权发布,转载请标明文章来源。

延伸阅读

5523c6426b93f011964fcba90d061f0b.png

大型语言模型实战指南:应用实践与场景落地

刘聪 沈盛宇 李特丽 杜振东 著

资深大模型技术专家撰写

零一万物、通义千问、面壁智能等

多个主流大模型的负责人力荐

内容简介:

这是一本系统梳理并深入解析大模型的基础理论、算法实现、数据构造流程、模型微调方法、偏好对齐方法的著作,也是一本能手把手教你构建角色扮演、信息抽取、知识问答、AI Agent等各种强大的应用程序的著作。本书得到了零一万物、面壁智能、通义千问、百姓AI、澜舟科技等国内主流大模型团队的负责人的高度评价和鼎力推荐。

153a4c7127c0607157a85dff214e4451.png

  • 本文来源:原创,图片来源:原创

  • 责任编辑:王莹,部门领导:宁姗

  • 发布人:白钰

<think>好的,我现在需要回答用户关于大模型在实际场景中的应用与落地技术的问题。用户提供了四个引用资料,我需要结合这些资料来组织答案,同时遵循之前的格式要求,比如使用中文、生成相关问题、正确引用等。 首先,我得理解用户的问题。用户想知道大模型在现实中的具体应用场景和相关的技术方案。根据提供的引用,引用1提到了RAG和Agent的现状,以及技术框架、用户、应用和生态的准备。引用2提到了基于大模型的企业AI应用开发,包括GPU算力、LangChain框架、微调等。引用3强调了微调垂直大模型和多模态模型的能力。引用4可能更多是学习资源,但暂时可能用不上。 接下来,我需要将信息结构化。可能的思路是按应用场景和技术方案分开阐述。应用场景可以包括智能客服、内容生成、行业知识库、多模态应用等。技术方案则需要涵盖模型微调、RAG、Agent、开发框架、算力支持、数据准备和模型部署等方面。 需要确保每个部分都自然引用对应的资料。例如,在讲RAG和Agent的时候,引用1提到它们还不成熟,但需要准备技术框架。引用2和3提到了模型微调和开发框架,如LangChain。引用3还提到了多模态模型,这也是一个应用场景。 然后,生成相关问题。用户之前的问题可能涉及如何选择模型、如何提升准确性、如何训练垂直模型、多模态应用开发等。这些问题需要基于回答中的内容来提出,确保相关性。 还要注意格式要求:行内数学公式用$...$,独立公式用$$...$$,不过当前问题可能不需要数学公式。但如果有的话,要正确应用。比如在解释模型微调时,如果有数学表达式,需要正确格式。 最后,检查引用标记是否在相关段落末尾自然添加,例如在提到RAG和Agent时引用[^1],在模型微调时引用[^2][^3],开发框架引用[^2],算力引用,数据准备引用[^3],部署引用等。 现在组织内容: 1. 应用场景部分: - 智能客服(引用2和3提到的企业应用) - 内容生成(生成文案、代码等) - 行业知识库(结合RAG,引用1和2) - 多模态应用(引用3) 2. 技术方案: - 模型微调(Fine-tuning,引用2和3) - RAG和Agent(引用1和2) - 开发框架如LangChain(引用2) - GPU算力(引用2) - 数据准备和蒸馏(引用2和3) - 模型部署(引用2和3) 确保每个技术点都有对应的引用。例如,提到RAG和Agent时引用,模型微调引用[^3],LangChain引用等。 相关问题部分需要生成四个问题,可能涉及应用场景选择、技术对比(RAG vs 微调)、多模态开发挑战、数据准备方法等。 现在开始撰写正式回答,保持结构清晰,分点说明,自然引用,最后生成相关问题。</think># 大模型实际应用场景落地技术方案解析 ## 一、实际应用场景 1. **智能客服与对话系统** 通过微调大模型实现企业级智能客服,支持自然语言理解、工单分类和情感分析。例如金融领域可定制风险控制问答系统[^2]。 2. **内容生成与辅助创作** 基于大模型的生成能力实现广告文案生成、代码辅助编写、法律文书草拟等场景。如$GPT$系列模型在创意写作中的应用。 3. **行业知识库增强** 结合RAG(检索增强生成)技术,将大模型与企业知识库结合,解决专业领域问答准确性问题。如医疗知识库的病症查询系统[^1]。 4. **多模态应用开发** 通过微调开源多模态大模型(如$CLIP$、$Flamingo$),实现图文检索、工业质检等场景,例如电商平台的商品图文匹配系统。 --- ## 二、核心技术方案 1. **垂直领域模型微调(Fine-tuning)** 使用领域数据对开源基座模型(如LLaMA、ChatGLM)进行增量训练,公式可表示为: $$\min_{\theta} \sum_{(x,y)\in D} \mathcal{L}(f_\theta(x), y)$$ 需进行数据蒸馏和参数高效微调(PEFT)。 2. **RAG与Agent技术** - RAG架构通过向量数据库增强上下文,提升专业问答准确性 - Agent技术实现任务拆解与工具调用组合,适用于复杂业务流程 3. **开发框架与工具链** 采用LangChain、LlamaIndex等框架构建应用流水线,集成以下模块: ```mermaid graph LR A[数据接入] --> B[向量化处理] B --> C[提示工程] C --> D[模型推理] D --> E[结果评估] ``` 4. **算力部署方案** - 训练阶段:使用NVIDIA A100/H100集群进行分布式训练 - 推理阶段:采用vLLM加速框架+量化技术(如FP16/INT8) --- ## 三、关键实施步骤 1. **数据准备** 构建高质量标注数据集,通过数据蒸馏技术过滤噪声数据 2. **模型部署** 使用Docker+Kubernetes实现模型服务化,通过API网关提供推理服务 3. **持续迭代** 建立A/B测试体系,监控指标包括响应延迟、准确率($P=\frac{TP}{TP+FP}$)等 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值