NVIDIA 自动驾驶安全报告出炉:实现从视觉、AI 到软件栈的全方位结合与升级!...

关注公众号,发现CV技术之美

在自动驾驶领域,复杂环境中的安全决策、不断增长的算力需求和验证流程优化等等环环相扣,如何在当前快节奏的商业环境下解决这些挑战,对于智驾方案的高效规模化落地来说非常重要。

NVIDIA(英伟达)近期发布了《自动驾驶安全报告》,在其中全面解析了硬件与软件生态深度融合的优势,并介绍了实现安全自动驾驶的核心方法与技术框架,值得智驾行业的工程师、开发者、项目经理或高管等来参考学习,扫描二维码获取报告资源:

5f76130f5d4bc7f01983f6e85295fdc5.png

报告核心内容概览

NVIDIA 自动驾驶安全报告》系统地介绍了其在自动驾驶技术开发中的全栈能力:

  • 从硬件到软件,覆盖从数据采集到道路测试的完整技术路径。

  • 通过对 AI 与加速计算的深度结合,提供端到端解决方案。

  • 在确保车辆安全性和可靠性方面,提出清晰且可操作的技术框架。

安全自动驾驶的四大技术支柱

安全报告特别强调了构建安全自动驾驶技术的四大核心支柱,每一项都与实际研发工作息息相关:

  1. AI 设计与实施平台:NVIDIA DRIVE 平台作为全球首个可扩展AI驾驶平台,通过统一的硬件与软件架构,为从 L2 级到 L5 级的自动驾驶系统开发提供强大支持。

  2. 面向深度学习的开发基础设施:依托 NVIDIA DGX 系统等 AI 基础设施,开发者能够训练复杂的深度神经网络并进行高精度的验证,支持自动驾驶模型在多样化场景下的性能提升。

  3. 用于自动驾驶汽车开发的物理精准传感器仿真:NVIDIA Omniverse Cloud 提供高保真仿真环境,让工程师能够在虚拟环境中测试车辆在各种极端情况下的表现,降低开发成本和风险。

  4. 卓越的全方位安全和网络安全计划:从 ISO 26262 功能安全标准到 SOTIF 预期功能安全,NVIDIA 建立了多层次的安全体系,覆盖从硬件设计到生命周期管理的各个环节。

这些相互配合的硬件与软件架构,贯穿 NVIDIA 自动驾驶汽车的研究、设计和部署基础设施的整个过程,以实现安全的自动驾驶。

安全架构设计的关键要点

在安全架构部分,报告深入分析了如何通过多样化和冗余的系统设计,确保自动驾驶系统在复杂环境中的可靠性。例如:

  • 硬件层面:DRIVE AGX 平台通过模块化设计和高性能计算能力,支持从 L2 级到 L5 级自动驾驶的广泛应用。

  • 软件层面:集成并融合深度学习模型和传统算法,提供的实时感知与决策能力,可实现最高级别的安全性。

  • 验证流程:基于仿真测试、数据中心验证和道路测试的多层验证机制,最大限度地降低了技术风险。

比如在报告中提到,最新的 DriveOS 是首个获得汽车功能安全领域的最高标准 ASIL-D 认证的软件定义可编程 AI 系统,为车规级的 SDK 进一步提升安全性可靠性。

如果你是系统架构设计工程师,这部分内容对于如何平衡性能、成本与安全来说,十分具有参考价值。

下载报告

通过硬件与软件协同、AI 与仿真结合的方式,NVIDIA 正在为行业提供值得借鉴且易于复现的全栈解决方案,以提升自动驾驶的整体安全性,扫描二维码获取 NVIDIA 报告资源:

《NVIDIA 自动驾驶安全报告》 4cd53261d65f581241062ddb2050d2b7.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值