关注公众号,发现CV技术之美
在自动驾驶领域,复杂环境中的安全决策、不断增长的算力需求和验证流程优化等等环环相扣,如何在当前快节奏的商业环境下解决这些挑战,对于智驾方案的高效规模化落地来说非常重要。
NVIDIA(英伟达)近期发布了《自动驾驶安全报告》,在其中全面解析了硬件与软件生态深度融合的优势,并介绍了实现安全自动驾驶的核心方法与技术框架,值得智驾行业的工程师、开发者、项目经理或高管等来参考学习,扫描二维码获取报告资源:

报告核心内容概览
《NVIDIA 自动驾驶安全报告》系统地介绍了其在自动驾驶技术开发中的全栈能力:
从硬件到软件,覆盖从数据采集到道路测试的完整技术路径。
通过对 AI 与加速计算的深度结合,提供端到端解决方案。
在确保车辆安全性和可靠性方面,提出清晰且可操作的技术框架。
安全自动驾驶的四大技术支柱
安全报告特别强调了构建安全自动驾驶技术的四大核心支柱,每一项都与实际研发工作息息相关:
AI 设计与实施平台:NVIDIA DRIVE 平台作为全球首个可扩展AI驾驶平台,通过统一的硬件与软件架构,为从 L2 级到 L5 级的自动驾驶系统开发提供强大支持。
面向深度学习的开发基础设施:依托 NVIDIA DGX 系统等 AI 基础设施,开发者能够训练复杂的深度神经网络并进行高精度的验证,支持自动驾驶模型在多样化场景下的性能提升。
用于自动驾驶汽车开发的物理精准传感器仿真:NVIDIA Omniverse Cloud 提供高保真仿真环境,让工程师能够在虚拟环境中测试车辆在各种极端情况下的表现,降低开发成本和风险。
卓越的全方位安全和网络安全计划:从 ISO 26262 功能安全标准到 SOTIF 预期功能安全,NVIDIA 建立了多层次的安全体系,覆盖从硬件设计到生命周期管理的各个环节。
这些相互配合的硬件与软件架构,贯穿 NVIDIA 自动驾驶汽车的研究、设计和部署基础设施的整个过程,以实现安全的自动驾驶。
安全架构设计的关键要点
在安全架构部分,报告深入分析了如何通过多样化和冗余的系统设计,确保自动驾驶系统在复杂环境中的可靠性。例如:
硬件层面:DRIVE AGX 平台通过模块化设计和高性能计算能力,支持从 L2 级到 L5 级自动驾驶的广泛应用。
软件层面:集成并融合深度学习模型和传统算法,提供的实时感知与决策能力,可实现最高级别的安全性。
验证流程:基于仿真测试、数据中心验证和道路测试的多层验证机制,最大限度地降低了技术风险。
比如在报告中提到,最新的 DriveOS 是首个获得汽车功能安全领域的最高标准 ASIL-D 认证的软件定义可编程 AI 系统,为车规级的 SDK 进一步提升安全性可靠性。
如果你是系统架构设计工程师,这部分内容对于如何平衡性能、成本与安全来说,十分具有参考价值。
下载报告
通过硬件与软件协同、AI 与仿真结合的方式,NVIDIA 正在为行业提供值得借鉴且易于复现的全栈解决方案,以提升自动驾驶的整体安全性,扫描二维码获取 NVIDIA 报告资源:
《NVIDIA 自动驾驶安全报告》