第1届ACM Multimedia多模态欺骗检测竞赛(MMDD2025)正式启动!

关注公众号,发现CV技术之美


竞赛介绍

多模态欺骗检测(Multimodal Deception Detection, MMDD)是一项极具挑战性的微视觉计算(Subtle Visual Computing)任务,其目标为从音视频场景中检测出难以察觉的欺骗性线索。

音视频欺骗检测[1, 2]是一种非接触式检测技术,相比接触式检测(测谎仪、脑电图、近红外光谱等)具有显著优势:1)突破了地理限制,无需面对面接触即可进行分析,具有极高的便捷度和检测效率,更适用于商业谈判和在线面试等场景;2)可以减少被检测者的心理压力,使其在自然环境中表现更为真实,有助于提高检测的准确性。

本次竞赛旨在汇聚全世界的研究人员和开发者,共同推进多模态学习与欺骗检测领域的技术进步,鼓励参赛选手积极创新。参与者需要签署协议并下载训练数据和部分评估数据集,将获得带标签的训练数据特征(OpenFace 特征、情感特征和梅尔频谱图等),分类为真实或欺骗,旨在构建鲁棒的AI欺骗检测模型,充分利用多模态特征来准确识别欺骗行为。本次竞赛依托多媒体领域国际顶级会议The 33rd ACM International Conference on Multimedia 2025。

  • 更多详情请移步竞赛网页:https://codalab.lisn.upsaclay.fr/competitions/22162

(图片来源:站酷海洛Plus)

本次竞赛作为首届微视觉计算研讨会与竞赛The 1st Workshop & Challenge on Subtle Visual Computing (SVC) @MM2025的一部分,由大湾区大学、南开大学、西安交通大学、新加坡南洋理工大学、美国密歇根大学、北京航空航天大学、芬兰拉彭兰塔工业大学、中山大学(深圳)、德国慕尼黑工业大学等单位的研究者联合举办。

  • SVC研讨会详情见:https://sites.google.com/view/svc-mm25


本次比赛奖金丰厚,欢迎来自高校、企业和研究机构的参赛者踊跃参加

  • 冠军:500美金+获奖证书

  • 亚军:200美金+获奖证书

  • 季军:100美金+获奖证书

PS: 前三名需把方案总结提交Workshop论文;另外,冠军方案将受邀投稿到国际期刊 Machine Intelligence Research (IF 6.4, JCR Q1区) 微视觉计算特刊,特刊链接见:https://link.springer.com/journal/11633/updates/27737746


比赛时间

  • 第一阶段:2025年3月15日 至 2025年5月15日

  • 第二阶段:2025年5月15日 至 2025年5月31日

获奖队伍公布时间:2025年6月8日


比赛赞助商:备至科技(安吉)有限公司


参赛选手群


竞赛海报

参考文献:

[1] Xiaobao Guo, Nithish Muthuchamy Selvaraj, Zitong Yu, Adams Kong, Bingquan Shen, Alex Kot. Audio-Visual Deception Detection: DOLOS Dataset and Parameter-Efficient Crossmodal Learning, ICCV 2023
[2] Xiaobao Guo, Zitong Yu, Nithish Muthuchamy Selvaraj, Bingquan Shen, Adams Wai-Kin Kong, Alex C Kot. Benchmarking Cross-Domain Audio-Visual Deception Detection, arXiv 2024

### 关于电子科技大学第八ACM趣味程序设计竞赛第二场正式赛的题目解析 目前未找到针对电子科技大学第八ACM趣味程序设计竞赛第二场正式赛的具体题解文档或官方解析[^1]。然而,可以通过分析常见的ACM竞赛题型以及类似的解题思路来推测可能涉及的内容。 #### 常见ACM竞赛题型及其解决方法 1. **暴力求解与优化** 许多ACM竞赛中的问题可以从暴力求解入手,逐步优化至更高效的算法。例如,《算法竞赛入门经典第二版》第七章提到的从暴力到枚举排列的方法可以帮助理解如何通过生成子集和回溯法解决问题[^2]。 2. **字符串处理与模式匹配** 类似于引用[2]中描述的“猜数字游戏”,需要编写一个程序比较两个四位数并输出特定格式的结果(如`xAyB`)。这类问题通常涉及到字符串操作、条件判断以及循环结构的设计[^3]。 3. **动态规划与状态转移方程** 动态规划是一种常用的技巧,尤其适用于具有重叠子问题特性的场景。比如计算某个位置可达路径总数时需考虑是否存在障碍物影响最终结果,正如引用[5]所展示的例子那样[(3,1)]无法获取金币因为后续移动受限[^4]。 4. **组合数学与计数原理应用** 对于某些统计类问题,则需要用到基本的加法规则或者乘法规则来进行有效数目估算。像引用[3]里关于OJ平台可免费使用的合适难度题目数量定义方式就是基于简单的位运算累加得出结论[^5]。 以下是部分典型代码片段示例: ```python def sum_of_digits(number): """返回整数number各位数字相加之和""" total = 0 while number > 0: total += number % 10 number //= 10 return total # 测试函数sum_of_digits() print(sum_of_digits(233)) # 输出应为8 ``` 上述Python脚本展示了如何快速计算任意正整数各个位上的数值总合,这正是应对类似a_i=a[i]=Σd_j形式需求的有效手段之一。 --- #### 总结 尽管未能直接定位到目标赛事的确切解答资料,但借助已知资源仍能够构建起一套完整的思考框架用于指导实际参赛过程中的策略制定工作。希望以上分享对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值