社交媒体预测挑战赛,ACM MM SMP Challenge 2024

ACMMM2024年度竞赛中的社交媒体预测挑战赛(SMPChallenge)聚焦于预测社交媒体帖子的关注度,利用Flickr的丰富数据集进行研究。参赛者将解决时序流行度预测问题,优秀团队将有机会发表论文并展示成果于ACMMM大会。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

社交媒体预测挑战赛,ACM MM SMP Challenge 2024

社交媒体预测挑战赛,ACM MM SMP Challenge 2024 竞赛开始啦!

https://smp-challenge.com/
ACM Multimedia(简称 ACM MM)始于1993年,是国际多媒体领域学术和产业界交流的最顶级盛会,也是中国计算机学会推荐的多媒体领域唯一的A类国际学术会议。ACM MM 2024 将于澳大利亚墨尔本本举办。
作为ACM MM重要的赛事,社交媒体预测挑战赛(Socia Media Prediction Challenge) 在 ACM MM 2024 上举办第七届竞赛。SMP Challenge已经具有长达7年的历史,该项全球竞赛旨在通过社交媒体预测任务,寻找社交媒体大数据预测与分析方向优秀的解决方案和团队。

本次竞赛的任务是预测互联网用户在社交媒体上发布不同帖子中关注点的流行度。时序流行度预测是该竞赛提出的一个大规模、多模式的时间序列预测问题,该问题也是网络世界中各种场景任务(比如在线广告、社交推荐、精准营销等)的核心问题。

主办方从全球最大的照片共享平台之一Flickr收集到目前为止数据覆盖最完整的社交媒体预测数据集SMPD(Social Media Prediction Dataset),该数据集包含了7万个用户的48.6万个消息以及各类匿名化处理后的社交媒体信息,如用户画像、分享行为、图像信息、文本信息、时间、位置、内容类别等丰富的标注。其中最新的18万条数据用于算法性能验证与最后的成绩评定。

Overview
SMP Challenge is an annual challenge that seeks excellent research teams on new ways of forecasting problems and meaningfully improving people’s social lives and business scenarios. The enormous amounts of online content lead to overconsumption, online word-of-mouth helps us to efficiently discover interesting news, emerging topics, the latest stories, or amazing products from the information ocean. Therefore, predicting online popularity became an emerging and significant task for online media, brand marketing, social influencers, or our individuals. We formulated this task as the Social Media Popularity Prediction. It focuses on predicting the impact of online post sharing on social media. It is central to various scenarios, such as online advertising, social recommendation, demand forecasting, etc.
数据集
具体任务以及评价标准
ACM MM Challenge 2024 竞赛委员会从获胜的团队中评选出一个最佳方案奖和多个优胜奖~

Top-5团队将会被邀请提交研究论文,用来入围ACM MM 2024 会议论文集,与此同时并在 ACM Multimedia Conference 上展示他们的优胜方案。

更多内容,情移步 https://smp-challenge.com/了解更多内容~

重点时间节点如下,不要错过哦~
重要时间节点

### 关于ACM Multimedia 2024会议的关键信息 #### 论文提交资格 Top-5团队将会被邀请提交研究论文,用来入围ACM MM 2024会议论文集,并在ACM Multimedia Conference上展示他们的优胜方案[^1]。 #### 原创性和审查规定 提交给ACM Multimedia的论文必须是作者的原创工作。这些作品不得同时在其他地方进行审查。已经过同行评审并在其他会议或研讨会上发表的作品不得再次提交给ACM Multimedia(另有针对arXiv/预印本的具体政策)。此外,ACM对于抄袭和自我抄袭有严格的政策,详情可参阅官方链接(https://www.acm.org/publications/policies/plagiarism),并且任何先前的工作都应得到恰当的引用[^2]。 #### 作者列表要求 根据大会的规定,在提交过程中需注意保持作者名单的一致性以及遵循所有相关的伦理指导原则。 ```python # 示例代码用于说明如何验证作者列表一致性 (假设场景) def check_author_consistency(submission_authors, previous_works_authors): """ 验证当前提交的作者列表与以往工作的作者列表之间是否存在不一致之处。 参数: submission_authors (list): 当前提交的作者列表 previous_works_authors (dict): 过往每篇相关文章对应的作者列表 返回: bool: 如果存在不一致返回False;如果完全匹配则返回True """ for title, authors in previous_works_authors.items(): if set(authors) != set(submission_authors): return False return True ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值