关注公众号,发现CV技术之美
中国科学技术大学、华为诺亚实验室、港科大、清华大学等单位 联合提出了一种超快速的任意尺度超分方法,ContinuousSR。
该文首次提出从离散低分辨率图像中重构高质量高分辨连续高斯场, 并借助2DGS实现快速多尺度连续超分,性能大幅度提升0.9dB,运行速度提升19倍。
论文标题:Pixel to Gaussian: Ultra-Fast Continuous Super-Resolution with 2D Gaussian Modeling
论文链接:https://arxiv.org/pdf/2503.06617
代码链接:https://github.com/peylnog/ContinuousSR
背景:为什么需要任意比例超分辨率(ASSR)?
图像超分辨率技术旨在从低分辨率(Low-Resolution, LR)图像生成高分辨率(High-Resolution, HR)图像。然而,传统的超分辨率方法通常只能处理固定比例(如×2、×4)的放大,这在实际应用场景中存在很大的局限性。
为了解决这一问题,近年来研究者们提出了任意比例超分辨率(Arbitrary-Scale Super-Resolution, ASSR),希望通过单一模型实现任意放大比例的超分辨率。一些基于隐式神经表示(Implicit Neural Representation, INR)的方法,如LIIF、CiaoSR等,已经在ASSR任务上取得了显著进展。
然而,这些方法常常需要多次上采样和解码步骤,不仅效率低下,还会因为隐函数的表达能力有限而导致生成图像质量的下降。

ContinuousSR:一场范式的革命
论文提出的ContinuousSR框架,创造性地引入了Pixel-to-Gaussian范式,通过高斯建模直接重建连续的高分辨率信号,从而彻底改变了ASSR任务的实现方式。
1. Pixel-to-Gaussian:从像素到高斯的重新定义
ContinuousSR的核心思想是将图像从像素空间转换到高斯空间。具体来说,论文提出通过2D高斯核来显式表示图像的连续信号。
每个高斯核具有位置、颜色、协方差矩阵等参数。通过优化这些参数,ContinuousSR能够高效地构建一个连续的高分辨率表示。
相比传统方法中繁琐的上采样和解码过程,使用高斯建模后可以直接采样生成任意比例的HR图像,大大提升了效率。

2. 三大创新模块:提升性能与效率
论文为ContinuousSR设计了三大核心模块,使得模型在性能和效率上都达到了新的高度:
DGP-Driven Covariance Weighting(DGP驱动的协方差加权)
通过对4万张自然图像进行统计分析,论文发现了一个重要规律——深度高斯先验(Deep Gaussian Prior, DGP),即高斯核的协方差参数服从一定的分布规律。为此,作者通过采样预定义的高斯核并引入动态加权机制,显著降低了高斯空间的优化难度。
Adaptive Position Drifting(自适应位置漂移)
在高斯核的初始化过程中,作者提出了一种动态偏移策略,使得高斯核可以根据图像内容自适应调整位置,从而在复杂纹理区域分布更多高斯核,大幅提升重建细节的质量。
Color Gaussian Mapping(颜色高斯映射)
针对RGB颜色参数的学习,论文采用了简单高效的多层感知机(MLP)结构,进一步优化了色彩表现。

3. 超快渲染速度与高质量重建
得益于Pixel-to-Gaussian范式和上述创新模块,ContinuousSR在性能和速度上都取得了惊人的表现:
极快的任意比例渲染:在完成高斯场构建后,模型能够以每比例1ms的速度生成HR图像,达到了现有方法的19.5倍加速。
重建质量显著提升:在多个基准数据集上的实验表明,ContinuousSR的重建性能相比现有方法提升了0.9 dB(PSNR),特别是在高放大倍率场景下表现尤为突出。

最新 AI 进展报道
请联系:amos@52cv.net
END
欢迎加入「超分辨率」交流群👇备注:SR