自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(65)
  • 资源 (81)
  • 论坛 (1)

转载 细说目标检测中的Anchors

本文转载自AI公园。作者:Raghul Asokan编译:ronghuaiyang导读给大家再次解释一下Anchors在物体检测中的作用。今天,我将讨论在物体检测器中引入的一个优雅的概念...

2020-08-31 23:55:44 92

转载 模型压缩+编译器优化,使AI算法在移动端性能超越专用硬件

作者|王言治,美国东北大学电子与计算机工程系助理教授出品|AI科技大本营(ID:rgznai100)近年来,机器学习(Machine Learning)领域的研究和发展可谓是与日...

2020-08-30 23:53:59 231

转载 为什么说卷积神经网络,是深度学习算法应用最成功的领域之一?

目前,作为深度学习的代表算法之一,卷积神经网络(Convolutional Neural Networks,CNN)在计算机视觉、分类等领域上,都取得了当前最好的效果。后来,基于深度神经...

2020-08-29 23:42:41 81

转载 南加州大学等开源元学习研究库learn2learn

近日,南加州大学单位等开源了一个元学习研究库learn2learn,旨在促进越来越多的元学习的研究,该库基于PyTorch,文档完善,样例丰富,是从事相关研究值得参考的开源库。相关论文:...

2020-08-29 23:42:41 61

转载 YOLOv4 中的 Mish 激活函数

本文转载自AI公园。作者:Miracle R编译:ronghuaiyang导读对YOLOv4中的Mish激活函数进行解释和优缺点对比。YOLO,是一种 one-shot 的目标检测技术,...

2020-08-28 10:00:41 217

转载 一键实现图像、视频卡通化,GAN又进化了

作者 |Xinrui Wang, Jinze Yu译者 |刘畅出品| AI科技大本营(ID:rgzani100)卡通爱好者的福利来了。现在,通过在Cartoonize这个应用上一键...

2020-08-28 10:00:41 129

转载 ECCV 2020 | CV “造车”,生成内容一致的车辆数据集 |

本文为52CV粉丝YorkeYao投稿,转载自知乎。链接:https://zhuanlan.zhihu.com/p/198061566本文介绍一篇我们发表于ECCV 2020的论文 《S...

2020-08-26 23:27:12 172

转载 594万元奖金 | “2020 年全国人工智能大赛”重磅启动

你是否想通过权威赛事证明实力?你是否尝试过以赛促学快速提升技术能力?你是否期待斩获百万大奖?2020年全国人工智能大赛(NAIC)规模大,含金量高,奖励丰厚,价值足,年度最值得参与的人工...

2020-08-26 23:27:12 485

转载 ECCV 2020 | 视觉引导的声源分离辅助立体声重构方法 Sep-Stereo

本文为52CV粉丝香港中文大学MMLab博士生Johann Zhou投稿。链接:https://zhuanlan.zhihu.com/p/162689191HighLight本文提出了一...

2020-08-26 23:27:12 110

转载 平均15-16薪,汇量科技2021届秋招正式启动!

52CV内推福利1、简历优先筛选2、优先面试3、优先录取(名额有限,抓紧报名)如何参与扫描下方二维码,关注并留言【汇量】获取内推机会小助手微信M星小助手(微信号:xiaozhong951...

2020-08-25 22:13:54 76

转载 直播课 | 三维人体扫描与AI测量

END备注:3D三维视觉与三维重建交流群3D计算机视觉技术、3D重建等技术,若已为CV君其他账号好友请直接私信。我爱计算机视觉微信号:aicvmlQQ群:805388940微博知乎:@我...

2020-08-25 22:13:54 57

转载 ECCV 2020 | 微软亚洲研究院精选论文摘录

编者按:ECCV(European Conference on Computer Vision)是计算机视觉领域的三大顶会之一。今年的ECCV大会于8月23日至28日在线上举行。微软...

2020-08-25 22:13:54 114

转载 如何利用 NVIDIA 安培架构 GPU 的新一代 Tensor Core 对计算进行极致加速

时隔三年,英伟达最强芯片 Tesla V100 终于有了继任者,那就是在2020年5月14日, NVIDIA发布的最新GPU A100。GPU A100不仅能实现 1-50 倍的扩展,还...

2020-08-24 23:45:18 129

转载 【EI&SCI征稿中】上海 · 首届长三角人工智能产业发展论坛AINIT2020

大会官网:www.ainit.org截稿时间:2020年9月18日大会时间:2020年9月18日-20日大会地点:中国•上海录用通知时间:3-5个工作日收录检索:EI 、SCOPUS检索...

2020-08-24 23:45:18 183

转载 ECCV 2020 | 清华提出基于循环关联的自监督行人再识别, 无标签ReID仅需两个摄像头!...

作者:清华大学电子系三年级博士生王重道本文将分享来自清华大学的电子系在读博士生王重道等人在ECCV的工作。他们提出了一种简单有效的自监督行人再识别解决方案——CycAs,它的良好性能证...

2020-08-24 23:45:18 131

转载 吸烟打电话检测、车道线识别等,2020中国华录杯·数据湖算法大赛火热进行中!...

●赛题背景●随着互联网的高速发展,“万物数据化”浪潮奔腾而来。数据湖围绕数据的全生命周期管理打造新一代数字基础设施,在硬件层面构筑了高性能、低成本、智能化、高安全的数字经济底座,并通...

2020-08-23 23:05:00 795 4

原创 项目合作 | 室内场景三维重建

52CV的一位粉丝正在寻找三维重建技术供应商,欢迎有相关技术的朋友联系。项目需求:室内场景三维重建项目需求内容:主要依托手机端实现室内场景重建,包括手机端三维数据采集与实时模型构建,支持...

2020-08-23 23:05:00 121

转载 为了给女朋友独特的七夕惊喜,我学会了人像美肤算法!

在人像美颜中,美肤是一个非常重要的组成部分,健康的肤色,可以凸显一个人整体的气质。搞定一套人像美肤算法,从根源解决你不会P图的烦恼,从此的你指哪磨哪,让女票对你刮目相看!你看,夺好本文选...

2020-08-23 23:05:00 117

转载 年薪40W,如何高效准备大厂AI算法岗面试?

如果说求职是人生的一道坎,那么面试就是最难翻越的那一块砖。当你经历过大大小小的面试之后,就会发现不同的公司、不同的面试官问的问题都大同小异,因为企业对于挑选人才是有一些共性的要求的,只要...

2020-08-22 23:56:17 46

原创 迁移性好、多用途,港中文提出特征分离的无监督人类三维姿态表征

本文将介绍一种基于特征分离的通用人类姿态特征的学习算法Unsupervised Human 3D Pose Representation with Viewpoint and Pose...

2020-08-22 23:56:17 126

转载 目标检测二十年间那些事儿——加速与优化

本文转载自DeepBlue深兰科技。在上一章中我们简短回顾了目标检测在过去的二十年中如何从传统滑窗算法到基于深度神经网络的全新领域,点击回顾。这次,我们来分享一些近年涌现的各类优化技术,...

2020-08-22 23:56:17 84

转载 杭州专场!华为机器视觉技术开放日—探索智能相机

当下机器视觉的发展,寻找复杂环境下“看得清、看得远、看的懂”的智能摄像机,已成为“AI+视频”领域发展的重要突破口。机器视觉前端智能化的优势有哪些?1、图像质量的增强:前端智能可精确做到...

2020-08-21 23:57:25 98

转载 语义分割双料冠军!微软 OCRNet化解语义分割上下文信息缺失难题|ECCV 2020

编者按:图像语义分割一直都是场景理解的一个核心问题。针对语义分割中如何构建上下文信息,微软亚洲研究院和中科院计算所的研究员们提出了一种新的物体上下文信息——在构建上下文信息时显式地增强了...

2020-08-21 23:57:25 651

转载 目标检测二十年间的那些事儿——从传统方法到深度学习

本文转载自DeepBlue深兰科技。本文主要参考自文献[1]:Zhengxia Zou, Zhenwei Shi, Member, IEEE, Yuhong Guo, and Jiepi...

2020-08-21 23:57:25 131

转载 吞吐性能翻倍!搭载了第三代Tensor Core的A100是怎么做到的?

时隔三年,英伟达最强芯片 Tesla V100 终于有了继任者,那就是在2020年5月14日, NVIDIA发布的最新GPU A100。GPU A100不仅能实现 1-50 倍的扩展,还...

2020-08-20 23:06:30 113

转载 一文尽览 ECCV 2020 旷视研究院15篇论文

本文转载自旷视研究院。图:ECCV 2020 词云分析结果8月23-28日,全球计算机视觉三大顶会之一,两年一度的 ECCV 2020(欧洲计算机视觉国际会议)即将召开。受到疫情影响,今...

2020-08-20 23:06:30 267

转载 数据不够,游戏来凑!随机三维人物实现可泛化的行人再辨识(ReID)

【导语】数据不够,游戏来凑!阿联酋起源人工智能研究院(IIAI)科学家通过随机组合颜色和纹理产生了8000个三维人物模型,并在游戏环境里模拟真实监控得到一个虚拟行人数据集,最终通过跨库泛...

2020-08-19 23:36:43 146

转载 首次公开!华为最前沿的X Labs实验室都在研究什么?5G+CV

5G 已经来了!5G x 行业应用如何擦出绚烂数字火花?分享老东家的一份X Labs揭秘视频,此视频揭示了几个有意思的应用:自主定位导航的无人车、机器视觉产品质检、视频直播、工程机械远程...

2020-08-18 23:29:51 163

转载 AI人脸识别真的成熟了吗?读完这篇你就懂了

作者 | 于曦AI 成为新基建风口模式下的一个重要选题,让人们对于 AI 的热情空前高涨。从一开始的烧钱阶段到今天的确定性发展,AI 一直渗透着人们的生活,从自动驾驶到人脸识别都是如此...

2020-08-18 23:29:51 125

转载 计算机视觉:学术界与工业界GAP有多大?

近年来,随着以深度学习为代表的机器学习方法在计算机视觉领域的广泛应用,以及计算机视觉在工业界场景中不断落地,CV领域的产、学两界之间的界限逐渐模糊,高校师生大规模加入工业界探索,而工业界...

2020-08-18 23:29:51 229

转载 如何3天读完并复现一篇经典顶会论文?

你是否要发AI论文但是苦于没有导师?就算有导师,自己的研究领域也可能不相符,很多情况下都是导师丢了一个课题,然后开始自己研究。你是否在工作中,需要经常的读论文,复现论文,却苦于没有办法?...

2020-08-18 23:29:51 131

转载 百万奖池大赛 | 交通事件、医学病理、违法广告检测等,2020首届江苏大数据开发与应用大赛启动...

大家好,初次见面,这里是SEED2020首届江苏大数据开发与应用大赛!01 大赛背景为进一步推动政府治理和公共服务能力现代化,激发大数据技术在智慧城市建设中的创新应用,江苏省工业和信息化...

2020-08-17 22:10:35 100

转载 GitHub Trending第一之后,PaddleOCR再发大招:百度自研顶会SOTA算法正式开源!

要说生活里最常见、最便民的AI应用技术,OCR(Optical Character Recognition,光学字符识别)当属其中之一。寻常到日常办理各种业务时的身份证识别,前沿到自动驾...

2020-08-17 22:10:35 213

转载 TMM|车辆重识别的一些实践

本文转载自知乎,已获作者授权转载。链接:https://zhuanlan.zhihu.com/p/186905783这篇文章是我们在CVPR2020 智慧城市AICity比赛中 得到冠军...

2020-08-17 22:10:35 94

原创 微软开源计算机视觉专题库,含分类、检测、分割、关键点、跟踪、动作识别等主流方向...

微软在计算机视觉研究领域一直非常活跃,尤其是国内的微软亚洲研究院诞生了诸如残差网络(ResNet)、Faster RCNN、高分辨率网络(HRNet)等影响巨大的算法。微软从去年开源了...

2020-08-16 23:57:58 262

转载 CVPR 2020 分方向论文大盘点合集

温故而知新!CVPR 2020已告一段落今日集结分方向论文以及领域顶会引用 Top 20论文欢迎’食用‘光流篇人脸技术篇目标检测篇目标跟踪篇超分辨率篇动作识别篇群组活动识别动作检测与动...

2020-08-15 23:29:34 233

原创 对抗攻击之利用水印生成对抗样本

本文为52CV粉丝鬼道投稿,介绍了对抗学习领域最新的工作Adv-watermark。论文标题:Adv-watermark: A Novel Watermark Perturbation ...

2020-08-14 23:54:07 137

转载 无需标注数据集,自监督注意力机制就能搞定目标跟踪

本文转载自机器之心。选自towardsdatascience作者:Rishab Sharma机器之心编译编辑:陈萍、杜伟深度学习的蓬勃发展得益于大规模有标注的数据驱动,有监督学习推动深度...

2020-08-14 23:54:07 110

转载 攻击人脸识别,最高奖励10万 | 微众银行第二届金融科技高校技术大赛正式启动...

FinTechathon 2020微众银行金融科技高校技术大赛再度开启!面向海内外高校精英学子发出征集令全线上赛事流程,跨越空间和地域更灵活的 PK 形式,考验智慧与才略这里依然有顶级的...

2020-08-13 17:05:15 62

原创 3000类别,20万个标注,山师等推出大规模Logo检测数据集:LogoDet-3K

Logo含有重要的商业信息,在商品搜索、影视节目制作、街景图片理解等任务中具有重要意义。今天新出的论文LogoDet-3K: A Large-Scale Image Dataset f...

2020-08-13 17:05:15 126

人脸识别现有应用介绍

人脸识别现有应用介绍 人脸识别 汉王 飞瑞斯 中控

2011-01-17

采用LBP金字塔的人脸描述与识别

采用LBP金字塔的人脸描述与识别脸识别 多尺度分析 LBP金字塔 直方图

2010-09-25

handwriten digit recognition by combined classifiers

UCI多特征数据库的原始文献,handwriten digit recognition by combined classifiers

2010-09-25

Automatic visual/IR image registration

A feature-based approach to visual/IR sensor image registra- tion is presented.This new method overcomes the difficulties caused by the discrepancy in data’s gray-scale characteristics and the problem of feature inconsistency.It employs a wavelet-based feature extractor to locate point features from contours based on local statistics of the image intensity.Matching is carried out at multiresolution levels based on point features.A consistency-checking step is involved to eliminate mis- matches.The algorithm is accurate,robust,and fast.It is capable of handling images with considerable translation,scaling,and rotation.De- tails on the registration algorithm including feature extraction,matching, consistency checking,and the image transformation model are dis- cussed.Experimental results using real visual/IR sensor data are presented.

2010-09-25

Statistical Pattern Recognition:A Review

The primary goal of pattern recognition is supervised or unsupervised classification.Among the various frameworks in which pattern recognition has been traditionally formulated,the statistical approach has been most intensively studied and used in practice.More recently,neural network techniques and methods imported from statistical learning theory have been receiving increasing attention.The design of a recognition system requires careful attention to the following issues:definition of pattern classes, sensing environment,pattern representation,feature extraction and selection,cluster analysis,classifier design and learning,selection of training and test samples,and performance evaluation.In spite of almost 50 years of research and development in this field,the general problem of recognizing complex patterns with arbitrary orientation,location,and scale remains unsolved.New and emerging applications,such as data mining,web searching,retrieval of multimedia data,face recognition,and cursive handwriting recognition, require robust and efficient pattern recognition techniques.The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

2010-09-25

LBP相关文献及Matlab程序

LBP相关文献及Matlab程序LBP文献 Matlab程序

2010-09-25

LBP人脸识别Yale数据库

LBP人脸识别Yale数据库,LBP 人脸识别 Yale数据库 matlab数据和程序 不是我写的。

2010-09-25

基于组合特征的车牌字符识别

车牌字符识别 Zernike矩 小波变换 特征提取 基于组合特征的车牌字符识别

2010-09-25

结合Zernike矩的多尺度模板形状匹配

结合Zernike矩的多尺度模板形状匹配,目标识别 形状匹配 小波变换 Zernike矩 。

2010-09-25

Zernike矩的快速算法

Zernike矩的快速算法,论文,可以参考下。

2010-09-25

联机手写数字识别程序

联机手写数字识别程序,不是我写的,分享一下。

2010-09-25

2010年第七届全国研究生数学建模竞赛试题与附件

2010年第七届全国研究生数学建模竞赛试题与附件包括ABCD四题

2010-09-17

文件批量命名工具FileBatchRemaerExe

文件批量命名工具 FileBatchRemaerExe

2010-07-31

OpenCV1.2安装文件

OpenCV1.2安装文件,计算机视觉开源函数库。

2010-07-31

rgb2hsi转换函数Matlab

图像从RGB空间转换到HSI空间,Matlab函数

2010-07-31

流形学习问题manifold study

线性维数约简方法 流形和维数约简. 流形学习的一些数学基础. 几种流形学习算法简介:LLE, Isomap, Laplacian Eigenmap. 流形学习问题的简单探讨.

2010-06-29

贝叶斯决策理论机器学习数据挖掘

贝叶斯分类器 正态分布决策理论 关于分类的错误率分析 最小风险Bayes分类器 Bayes分类器算法和例题 聂曼-皮尔逊判别准则 最大最小判别准则 决策树 序贯分类

2010-06-29

MathematicalProblemsinImageProcessing

Contents Foreword vii Preface to the Second Edition xi Preface to the First Edition xv Guide to the Main Mathematical Concepts and Their Application xxv Notation and Symbols xxvii 1 Introduction 1 1.1 The Image Society.....................1 1.2 What Is a Digital Image?..................3 1.3 About Partial Di?erential Equations(PDEs).......5 1.4 Detailed Plan........................5 2 Mathematical Preliminaries 29 How to Read This Chapter....................29 2.1 The Direct Method in the Calculus of Variations.....30 2.1.1 Topologies on Banach Spaces...........30 2.1.2 Convexity and Lower Semicontinuity.......32 2.1.3 Relaxation......................37 2.1.4 AboutΓ-Convergence................40 2.2 The Space of Functions of Bounded Variation......42xx Contents 2.2.1 Basic Definitions on Measures...........43 2.2.2 Definition of BV(?)................45 2.2.3 Properties of BV(?)................46 2.2.4 Convex Functions of Measures...........50 2.3 Viscosity Solutions in PDEs................50 2.3.1 About the Eikonal Equation............50 2.3.2 Definition of Viscosity Solutions..........52 2.3.3 About the Existence................54 2.3.4 About the Uniqueness...............55 2.4 Elements of Di?erential Geometry:Curvature......57 2.4.1 Parametrized Curves................58 2.4.2 Curves as Isolevel of a Function u.........58 2.4.3 Images as Surfaces.................59 2.5 Other Classical Results Used in This Book........60 2.5.1 Inequalities.....................60 2.5.2 Calculus Facts....................62 2.5.3 About Convolution and Smoothing........62 2.5.4 Uniform Convergence................63 2.5.5 Dominated Convergence Theorem.........64 2.5.6 Well-Posed Problems................64 3 Image Restoration 65 How to Read This Chapter....................65 3.1 Image Degradation.....................66 3.2 The Energy Method.....................68 3.2.1 An Inverse Problem.................68 3.2.2 Regularization of the Problem...........69 3.2.3 Existence and Uniqueness of a Solution for the Minimization Problem.............72 3.2.4 Toward the Numerical Approximation......76 The Projection Approach..............76 The Half-Quadratic Minimization Approach...79 3.2.5 Some Invariances and the Role ofλ........87 3.2.6 Some Remarks on the Nonconvex Case......90 3.3 PDE-Based Methods....................94 3.3.1 Smoothing PDEs..................95 The Heat Equation.................95 Nonlinear Di?usion.................98 The Alvarez–Guichard–Lions–Morel Scale Space Theory.................107 Weickert’s Approach................113 Surface Based Approaches.............117 3.3.2 Smoothing–Enhancing PDEs............121 The Perona and Malik Model...........121Contents xxi Regularization of the Perona and Malik Model: Catt′e et al......................123 3.3.3 Enhancing PDEs..................128 The Osher and Rudin Shock Filters........128 A Case Study:Construction of a Solution by the Method of Characteristics...........130 Comments on the Shock-Filter Equation.....134 3.3.4 Neighborhood Filters,Nonlocal Means Algorithm, and PDEs......................137 Neighborhood Filters................138 How to Suppress the Staircase E?ect?......143 Nonlocal Means Filter(NL-Means)........146 4 The Segmentation Problem 149 How to Read This Chapter....................149 4.1 Definition and Objectives..................150 4.2 The Mumford and Shah Functional............153 4.2.1 A Minimization Problem..............153 4.2.2 The Mathematical Framework for the Existence of a Solution...............154 4.2.3 Regularity of the Edge Set.............162 4.2.4 Approximations of the Mumford and Shah Functional......................166 4.2.5 Experimental Results................171 4.3 Geodesic Active Contours and the Level-Set Method...173 4.3.1 The Kass–Witkin–Terzopoulos model.......173 4.3.2 The Geodesic Active Contours Model.......175 4.3.3 The Level-Set Method...............182 4.3.4 The Reinitialization Equation...........194 Characterization of the Distance Function....195 Existence and Uniqueness.............198 4.3.5 Experimental Results................206 4.3.6 About Some Recent Advances...........208 Global Stopping Criterion.............208 Toward More General Shape Representation...211 5 Other Challenging Applications 213 How to Read This Chapter....................213 5.1 Reinventing Some Image Parts by Inpainting.......215 5.1.1 Introduction.....................215 5.1.2 Variational Models.................216 The Masnou and Morel Approach.........216 The Ballester et al.Approach...........218 The Chan and Shen Total Variation Minimization Approach.................220xxii Contents 5.1.3 PDE-Based Approaches..............222 The Bertalmio et al.Approach...........223 The Chan and Shen Curvature-Driven Di?usion Approach.................224 5.1.4 Discussion......................225 5.2 Decomposing an Image into Geometry and Texture...228 5.2.1 Introduction.....................228 5.2.2 A Space for Modeling Oscillating Patterns....229 5.2.3 Meyer’s Model....................232 5.2.4 An Algorithm to Solve Meyer’s Model......233 Prior Numerical Contribution...........234 The Aujol et al.Approach.............234 Study of the Asymptotic Case...........241 Back to Meyer’s Model...............242 5.2.5 Experimental Results................245 Denoising Capabilities...............245 Dealing With Texture...............248 5.2.6 About Some Recent Advances...........248 5.3 Sequence Analysis......................249 5.3.1 Introduction.....................249 5.3.2 The Optical Flow:An Apparent Motion.....250 The Optical Flow Constraint(OFC).......252 Solving the Aperture Problem...........253 Overview of a Discontinuity-Preserving Variational Approach................256 Alternatives to the OFC..............260 5.3.3 Sequence Segmentation...............261 Introduction.....................261 A Variational Formulation.............264 Mathematical Study of the Time-Sampled Energy...............265 Experiments.....................269 5.3.4 Sequence Restoration................271 Principles of Video Inpainting...........276 Total Variation(TV)Minimization Approach..277 Motion Compensated(MC)Inpainting......277 5.4 Image Classification.....................281 5.4.1 Introduction.....................281 5.4.2 A Level-Set Approach for Image Classification.................282 5.4.3 A Variational Model for Image Classification and Restoration.....................290 5.5 Vector-Valued Images....................299 5.5.1 Introduction.....................299 5.5.2 An Extended Notion of Gradient.........300Contents xxiii 5.5.3 The Energy Method................300 5.5.4 PDE-Based Methods................302 A Introduction to Finite Di?erence Methods 307 How to Read This Chapter....................307 A.1 Definitions and Theoretical Considerations Illustrated by the 1-D Parabolic Heat Equation............308 A.1.1 Getting Started...................308 A.1.2 Convergence.....................311 A.1.3 The Lax Theorem..................313 A.1.4 Consistency.....................313 A.1.5 Stability.......................315 A.2 Hyperbolic Equations....................320 A.3 Di?erence Schemes in Image Analysis...........329 A.3.1 Getting Started...................329 A.3.2 Image Restoration by Energy Minimization...333 A.3.3 Image Enhancement by the Osher and Rudin Shock Filters....................336 A.3.4 Curve Evolution with the Level-Set Method...338 Mean Curvature Motion..............339 Constant Speed Evolution.............340 The Pure Advection Equation...........341 Image Segmentation by the Geodesic Active Contour Model...............342 B Experiment Yourself!343 How to Read This Chapter....................343 B.1 The CImg Library......................344 B.2 What Is Available Online?.................344 References 349 Index 373

2010-06-25

OpenCV1.0安装文件

在VC6下配置OpenCV1.0文档。 http://www.opencv.org.cn/index.php/VC6%E4%B8%8B%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AEOpenCV1.0

2010-06-25

表达式求值C++代码

表达式求值C++代码,我测试过,挺好用。遇到类似问题,可以参考一下。

2010-06-13

支持基本RichText编辑功能的消息应用程序附件

注意:这个资源是中兴捧月的一题,我保存下来自己看的,网上可以找到,大家就不要下载了吧 请基于高通BREW SDK及模拟器开发包,为类似手机设备这样的小型终端,设计一个支持基本的RichText编辑功能的类似短消息的brew应用程序。 初赛要求: 1、 该应用第一阶段至少支持消息内容的编辑功能,消息的保存和阅读、删除功能。在编辑界面的任意位置可以实现字符,动画,图片,铃音的插入和删除功能。如下图: 2、 界面一级菜单至少包含:新建消息,草稿箱,帮助 3、 实现一个编辑功能BREW接口控件,至少支持以下要求: (1)编辑内容时能输入文本,并能设置文本的字体大小(大字体、小字体两种) (2)编辑内容时能能插入图片,图片格式为BMP文件,32x32像素,256色 (3)编辑内容时能插入动画,动画格式为4幅(2)要求BMP的图片,当光标移动到动画位置时,能播放动画,当光标移开时,停止播放 (4)编辑内容时能插入铃音,铃音格式为标准MIDI文件,大小32k以内,当光标移动到铃音位置时能够播放铃音,当光标移开时,停止播放 4、 能将编辑的内容保存到一个草稿箱消息文件,该文件格式可以自己定义,但要保证文本、图片、声音的数据保存完整 5、 支持草稿箱阅读保存的内容。所有输入内容能正常显示、播放 6、 支持草稿箱删除消息功能 实现技术提示信息: BREW SDK 模拟器可以在windows操作系统平台直接运行,可以结合visual studio 6.0 IDE 环境方便代码工程管理和代码调试。BREW应用开发语言为C语言。 BREW SDK已经提供了接口,支持了BMP图片显示及MIDI文件的播放。 参考资料信息: 可从https://brewx.qualcomm.com/brew/sdk/download.jsp,高通公司的官方网站下载安装。进入网站下载页面后,用自己的电子邮箱地址注册帐号,即可下载BREW SDK。 BREW SDK中已携带参考文档: 1) 《BREWSDKUserDocs.chm》 2) 《BREWAPIReference.chm》 3) 《BREWSDKUserDocs.chm》 3GPP TS 23.040 V530文档(请见附件): www.3GPP.org,也可在网上找到该文档的其他版本 审核标准: 1、 设计文档是否有效解决了题目问题,是否清晰反映了设计者的设计思路,文档结构组织是否合理 2、 参赛程序对题目所要求功能的实现程度 3、 参赛作品是否具有很好的可读性和运行效率,资源占用情况是否合适

2010-06-09

南京理工大学计算机学院复试上机编程题目

南京理工大学计算机学院复试上机编程题目,需要的可以看看。不过这是前几年的。

2010-05-28

南京理工大学数据库系统

南京理工大学数据库系统课件和部分练习题,考研的同学可以参考一下。

2010-05-28

南京理工大学数据结构

南京理工大学数据结构,考研的同学可以参考一下。

2010-05-28

南京理工软件工程讲稿

南京理工软件工程讲稿,考研的可以参考一下。

2010-05-28

南京理工大学操作系统课件

南京理工大学 操作系统 课件,考研的同学可以下载参考。

2010-05-28

南京理工大学计算机网络课件

南京理工大学计算机网络课件, computer networking,考研的同学可以参考。

2010-05-28

数学建模个人经验谈共九个部分

包括:组队和分工,选题,文献资料查找,论文写作,培训,实践,如何写好数学建模论文和一些个人心得。 不是我写的。 大家备战数模的可以参考一下。 我在本科阶段没有参加过数学建模,因为有一种畏惧感,觉得那是数学学得很好的人才能做得来的。研究生阶段第一次抱着试一试的心态参加了第六届研究生数模,个人感觉没有想象中的那么难,而且所解决的问题很有挑战性也比较有价值,最终拿了个三等奖。 研究生建模竞赛的好处是:自己组队,没有指导老师,不会有为了学校获奖老师给学生出方案的情况(可能也会有,不过是不被允许的),更客观。 总的来讲,数学建模是体现一个人综合解决问题能力的一个平台,研究生数学建模竞赛更是有很多科研的成分,很有挑战性。

2010-05-19

2010成都信息工程学院研究生数模赛题

投票倾向问题 2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题2010成都信息工程学院研究生数模赛题

2010-05-19

weka使用教程中文版

目录 1. 简介2. 数据格式3.数据准备4. 关联规则(购物篮分析)5. 分类与回归6. 聚类分析

2010-05-19

实对称矩阵对角化含Matlab代码

实对称矩阵,对角化,有两篇论文,内含Matlab实现代码,在文章里的,可以直接写下来使用。测试过,还可以。

2010-05-19

经过裁剪预处理的面部表情识别研究用JAFFE数据库

网上JAFFE数据库几乎都是原始数据库,未经人脸裁剪/人脸剪切的,这个数据库是经过预处理的,已经将人脸利于面部表情识别的部分剪切出来,并存成64*82大小图像(详细裁剪算法请参考张一鸣,《面部表情识别》,该裁剪程序可在我的另一个资源里找到),按照类别分成7组,并详细标明各组所属表情分类,可直接用于面部表情识别实验。

2010-05-12

人脸面部表情识别日本jaffe数据库

人脸表情识别日本jaffe数据库,是表情识别领域应用最为广发的一个数据库之一,总共包含7种表情。

2010-05-12

人脸表情识别论文人脸预处理人脸检测裁剪特征提取模式分类

是篇硕士论文,详细介绍了人脸表情识别的预处理,特征提取,分类识别和系统设计各个阶段,是表情识别入门读物。

2010-05-12

人脸表情识别预处理人脸裁剪系统Face Cropping人脸裁切

该程序是为人脸表情识别研究实验人脸预处理阶段而开发的半自动人脸裁剪系统,因为大部分人脸表情数据库都是未经裁剪/裁切的,而去除背景是人脸表情识别预处理的重要一步。网上有很多人脸数据库,但大部分是未经裁剪/人脸裁切处理的,不能直接用于人脸表情识别试验。 该程序是为人脸表情识别研究实验人脸预处理阶段而开发的半自动人脸裁剪/人脸裁切系统,因为大部分人脸数据库都是未经裁剪的,而去除背景是人脸表情识别预处理的重要一步。 图像归一化为64*82大小,归一化方案请参见张一鸣,《人脸表情识别》。采用OpenCV+MFC制作,不提供源代码。用到的同学可以下载。 敬告:因为本程序读取.tif格式图像使用OpenCV函数,而.tif格式本身的复杂性导致没有通用的读取函数,故对有些.tif图像可能会出问题。

2010-05-12

人脸识别预处理人脸裁剪系统Face Cropping人脸裁切

网上有很多人脸数据库,但大部分是未经裁剪处理的,不能直接用于人脸识别试验。而整个网络也几乎找不到人脸裁剪/人脸裁切的工具,广大初入人脸识别研究领域的人不知如何入手。 该程序是为人脸识别研究实验人脸预处理阶段而开发的半自动人脸裁剪/人脸裁切系统,因为大部分人脸数据库都是未经裁剪/裁切的,而去除背景是人脸识别预处理的重要一步。 采用OpenCV+MFC制作,不提供源代码。用到的同学可以下载。 敬告:因为本程序读取.tif格式图像使用OpenCV函数,而.tif格式本身的复杂性导致没有通用的读取函数,故对有些特殊格式的.tif图像可能会出问题。

2010-05-12

kMeansCluster k均值聚类算法Matlab代码实现

kMeansCluster k均值聚类算法Matlab代码实现,聚类里的经典算法。可以参考应用。

2010-05-09

实对称矩阵相似对角化Matlab程序

实对称矩阵相似对角化Matlab程序,用到的朋友可以下载看看。

2010-05-07

人脸识别研究用ORL数据库

人脸识别 ORL数据库 图像和.mat数据 不需裁剪和预处理可直接用于实验。

2010-05-06

经过裁剪预处理的人脸识别研究用FERET数据库

经过裁剪预处理的人脸识别研究用FERET数据库(美国军方数据库),共有200个人,每个人7幅图像,包括图像和.mat数据,可以直接用于人脸识别实验。

2010-05-06

谁能详细介绍下判别模型和生成模型?

发表于 2011-11-23 最后回复 2011-11-23

空空如也
提示
确定要删除当前文章?
取消 删除