图像局部特征抽取

原理

我们都知道著名的sift算法以及surf算法,但在当我们需要在海量数据中匹配点时,往往会出现很高的错误的匹配率,而且搜索算法的限制也是不可实用的方案,然而在使用其他图像特征进行搜索是比较可行的,而我们的人的眼睛在观察事物的时候也是有局部性的,使用这一特点,可搜索原图变化的图像,因为一张图,不可能全部地方都会被污染;这时候对图像进行分割是一个很重要的工作,下面就是结合surf算法的特征点来对图像进行分割的,这种做法就是冗余了太多的数据特征,但这个比google的硬分割的效果好很多

分割效果

(先看效果图:图片是某宝上的随便选取的图片)
这里写图片描述

下面这张经过裁剪和旋转变化以及污染后的图
这里写图片描述

下面是通过surf特征点进行抽取的局部小图
这里写图片描述
左半部分的小图像是经过原图变化后的抽取的局部小图像,右半部分是原图抽取的局部小图像;可以看到虽然不是全部准确的抽取了局部的小图像,这个结果还可以接受的;

分割源码


        //加载opencv本地库
        System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
        Mat src=Highgui.imread("/root/Desktop/test_c.jpg");
        //缩放图像大小
        int nsize=300;
        Mat dst=new Mat();
        float height=src.height();
        float width=src.width();

        int nheight=0;
        int nwidth=0;
        if(height>=width)
        {
            nwidth=nsize;
            nheight=(int) (height*(nsize/width));

        }else
        {
            nheight=nsize;
            nwidth=(int) (width*(nsize/height));
        }

        Size size=new Size(nwidth,nheight);

        //缩放图像
        Imgproc.resize(src, dst, size);

        //高斯核大小
        Size gsize=new Size(51,51);

        Mat gdst=new Mat();
        //中值滤波
        Imgproc.medianBlur(dst, gdst, 11);
        //高斯滤波
        Imgproc.GaussianBlur(gdst, gdst, gsize, 11);

        //获取surf特征点
        FeatureDetector fd=FeatureDetector.create(FeatureDetector.SURF);

        MatOfKeyPoint keypoints=new MatOfKeyPoint();
        fd.detect(gdst, keypoints);
        Integer loop=0;
        int radius=50;
        for(KeyPoint point:keypoints.toArray())
        {
            loop++;
            //获取surf特征点的坐标
            int ph=((int)(point.pt.y));
            int pw=((int)(point.pt.x));

            //从opencv Mat转换为BufferedImage 
            BufferedImage image=SegmentUtils.getImage(dst,".jpg");
            if(nheight-ph>=radius && nwidth-pw>=radius && ph>radius && pw>radius)
            {
                //对图片形进行分割
                SegmentUtils.drawCircle(image, pw, ph, radius,"/root/Desktop/b/tmp"+loop+".jpg");
            }

        }
【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,并提供了相应的Matlab代码实现。该模型结合了MBLS在非线性映射和快速学习方面的优势,以及Copula函数在刻画多变量随机变量之间复杂相关性结构的能力,能够有效处理光伏发电的不确定性与时空相关性,从而提高预测精度和可靠性。此外,文中还列举了多个相关领域的研究案例和技术应用,展示了其在电力系统、机器学习、路径规划等多个方向的广泛应用前景。; 适合人群:具备一定编程基础和电力系统背景知识,熟悉Matlab编程语言,从事新能源发电预测、电力系统优化等相关领域研究的研发人员和高校师生。; 使用场景及目标:①应用于光伏电站的实际功率预测中,提升电网调度的准确性和稳定性;②作为学术研究工具,探索新型预测算法在处理非线性和不确定性问题上的潜力;③为其他可再生能源如风力发电的概率预测提供借鉴和参考。; 阅读建议:建议读者结合实际数据进行实验验证,深入理解MBLS和Copula理论的核心思想及其实现细节,同时关注模型参数的选择对预测性能的影响,以期达到最佳的应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值