概率,随机变量,离散型连续型,边缘分布

引入
今天做一道题,已知联合分布函数求边缘密度函数,这个二维随机变量是符合均匀分布的,并且给出了X,Y区间也就是分布区域D,这道题解题思路很简单,因为有公式可以套
解题思路:
首先根据二维随机变量均匀分布可以直接得到联合概率密度函数,然后再根据公式可以得到X和Y的边缘密度函数,公式一会用图贴出来,但是此时问题来了,为什么X的密度函数是对dy求积分还有积分的上下限怎么确定???
提出问题
接下来又扯出了之前面对概率论一直存在的问题:
1、为什么引入随机变量
2、引入之前,我们是如何计算概率,能解决哪些问题
3、引入之后,随机变量帮我们解决了什么问题

4、为什么连续型随机变量要用积分求
5、连续型随机变量和离散型随机变量到底有什么区别
6、生活中有哪些具体例子是离散型是连续型的

本文引用例子
以抛硬币为例,将一枚硬币抛掷3次,观察正面(H),反面(T)出现的情况

解决问题
1、引入随机变量之前我们怎么计算概率
1)认识概率和频率的区别
课本的定义:
(1)频率:在相同条件下,进行n次实验,事件A发生的次数nA,称为A的频数,那么nA/n的比值称为事件A的频率
(2)概率:设E是随机实验,S是它的样本空间,对于E的每一事件A赋予一个实数,称为事件A的概率


2)认识样本空间,事件
(1)样本空间就是随机实验的所有结果,比如投掷一枚硬件三次,出现正反面的所有可能结果
(2)我理解的事件就是对样本空间根据事件的定义进行不同的划分,比如出现一次正面为事件A1,出现两次正面为事件A2,出现的正面次数比反面次数多为事件B,当然此时事件B又可以划分为其他子事件比如事件B1={正面3次反面0次},B2={正面2次反面1次}

3)事件的关系,独立性
(1)根据课本的结构,还要认识事件的关系,比如互斥,对立,和,差等关系,重点要区分对立和互斥的区别,其实对立事件就是把样本空间一分为二,互斥可能就布置一分为2了,可能分成好几份,但是这几份或者其中的某两份不会同时发生就是了
(2)对独立性的理解是,两个事件发生互不影响

2、引入随机变量
1)什么是随机变量
官方解释:随机变量用X表示,X是定义在样本空间S上的实值单值函数.
抠词:什么是实值单值函数?实值就是实数值,数分为实数虚数复数嘛,单值是什么意思呢,每一个样本点e,X都有一个数与之对应,因为我们还有多值函数等函数,然后既然是函数,那就有定义域和值域啊,在这里定义域就是样本空间,值域就是X的值,举个例子,一枚硬币抛掷3次,X表示出现正面的次数,X的值域就是(0,1,2,3),X=0时,定义域是不是就是{TTT},T表示硬币反面.

我的理解 :随机变量,实值单值函数,那么就抓住定义域和值域,定义域对应样本空间,值域看你事件是怎么定义的,一般是对应的样本的空间的概率.其实就是包装了一下实质不也是求一定条件下某样本空间的概率嘛


2)离散还是连续
官方定义关键字:离散就是,样本点是有限或者可列无限多个
我的理解:只可意会不可言传,因为时间有限,有些内容不多说,自习百度
在理解离散型随机变量时,顺带理解一下他的分布律,其实也是求每个事件对应的概率啦,然后还有一些比较特殊的分布,(0-1)分布其实就是对立事件的概率,因为他的实验结果只能有两种,然后是二项分布,就是对(0-1)分布进行多次实验得到的概率,然后是泊松分布,比较有趣的是他可以来表示医院在一天内的急诊病人数等等,当然如果病人数一直增多概率到最后是一直变小,因为一个医院容纳病人数是有限的

3)分布函数
这个得好好理解,分布函数为什么而存在,它是为了区间概率而存在,一般如果我们要知道点概率,如果是离散型变量看分布律就可以知道,如果是连续型那就把点带入概率密度函数也可以知道该点的概率,但是如果是分布函数表示的意义就不同了,他要表示负无穷到x的概率,是区间概率,
离散型的分布函数就把x之前的点概率加起来就是F(x)的值,那么连续型也是一样,但是连续把所有点加起来就会发现是一个面积,求面积就得用积分啊

4)连续型变量:均匀分布,指数分布,正态分布
这些应用公式可以解决,还有一般的正态分布如果转成正态分布

边缘分布
见课本P65

其实重点理解,分布函数,和概率密度函数,以及随机变量就可以了,计算概率嘛实质就是抓住样本空间和对应的概率就可以了

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页