17. 二元离散型随机变量边际分布律与条件分布律

二元离散型随机变量边际分布律与条件分布律


边际分布


对于离散型随机变量 ( X , Y ) (X,Y) (X,Y),分布律为 P ( X = x i , Y = y j ) = p i j , i , j = 1 , 2 , ⋯ P(X=x_i,Y=y_j)=p_{ij},i,j=1,2,\cdots P(X=xi,Y=yj)=piji,j=1,2,

X , Y X,Y X,Y 的边际分布律为:

P ( X = x j ) = P ( X = x i , ⋃ j = 1 ∞ ( Y = y j ) ) = ∑ j = 1 ∞ p i j = 记为 p i ⋅ P(X=x_j)=P(X=x_i,\bigcup_{j=1}^{\infty}(Y=y_j))=\sum_{j=1}^{\infty}p_{ij}\overset{\text{记为}}{=}p_{i·} P(X=xj)=P(X=xi,j=1(Y=yj))=j=1pij=记为pi

同理,

P ( Y = y j ) = P ( ⋃ i = 1 ∞ ( X = x j ) , Y = y j ) = ∑ i = 1 ∞ p i j = 记为 p ⋅ j P(Y=y_j)=P(\bigcup_{i=1}^{\infty}(X=x_j),Y=y_j)=\sum_{i=1}^{\infty}p_{ij}\overset{\text{记为}}{=}p_{·j} P(Y=yj)=P(i=1(X=xj),Y=yj)=i=1pij=记为pj

注意: 记号 p i ⋅ p_{i·} pi 表示是由 p i j p_{ij} pij 关于 j j j 求和后得到的;

    \quad\quad\,\,\, 同样 p ⋅ j p_{·j} pj 是由 p i j p_{ij} pij 关于 i i i 求和后得到的;

X Y y 1 y 2 ⋯ y j ⋯ P ( X = x i ) x 1 p 11 p 12 ⋯ p 1 j ⋯ p 1 ⋅ x 2 p 21 p 22 ⋯ p 2 j ⋯ p 2 ⋅ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ x i p i 1 p i 2 ⋯ p i j ⋯ p i ⋅ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ P ( Y = j ) p ⋅ 1 p ⋅ 2 ⋯ p ⋅ j ⋯ 1 \begin{array}{c|ccccc|c} _X\bcancel{\quad^Y} & y_1 & y_2 & \cdots & y_j & \cdots & P(X=x_i) \\ \hline x_1 & p_{11} & p_{12} & \cdots & p_{1j} & \cdots & p_{1·} \\ x_2 & p_{21} & p_{22} & \cdots & p_{2j} & \cdots & p_{2·} \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots & \vdots \\ x_i & p_{i1} & p_{i2} & \cdots & p_{ij} & \cdots & p_{i·} \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots & \vdots \\ \hline P(Y=j) & p_{·1} & p_{·2} & \cdots & p_{·j} & \cdots & 1 \end{array} XY x1x2xiP(Y=j)y1p11p21pi1p1y2p12p22pi2p2yjp1jp2jpijpjP(X=xi)p1p2pi1


例 1: 盒中装有 3 只红球,2 只白球,现分两从中任取 1 球,以 X 、 Y X、Y XY 分别表示第 1、2 次取到的红球数。采用不放回与放回抽样分别求: X , Y X,Y X,Y的联合分布律及边际分布律。

解:

X = { 0 , 第 1 次 取 到 白 球 1 , 第 1 次 取 到 红 球 , Y = { 0 , 第 2 次 取 到 白 球 1 , 第 2 次 取 到 红 球 X=\begin{cases} 0, & 第 1 次取到白球 \\ 1, & 第 1 次取到红球, \end{cases} Y=\begin{cases} 0, & 第 2 次取到白球 \\ 1, & 第 2 次取到红球 \end{cases} X={0,1,11Y={0,1,22

先计算不放回抽样:

X Y 0 1 p i ⋅ 0 2 5 ⋅ 1 4 2 5 ⋅ 3 4 2 5 1 3 5 ⋅ 2 4 3 5 ⋅ 2 4 3 5 p ⋅ j 2 5 3 5 \begin{array}{c|cc|c} _X\bcancel{\quad^Y} & 0 & 1 & p_{i·} \\ \hline 0 & \cfrac{2}{5}·\cfrac{1}{4} & \cfrac{2}{5}·\cfrac{3}{4} & \cfrac{2}{5} \\ \\ 1 & \cfrac{3}{5}·\cfrac{2}{4} & \cfrac{3}{5}·\cfrac{2}{4} & \cfrac{3}{5} \\ \\ \hline p_{·j} & \cfrac{2}{5} & \cfrac{3}{5} & \end{array} XY 01pj0524153425215243534253pi5253

再计算放回抽样:

X Y 0 1 p i ⋅ 0 2 5 ⋅ 2 5 2 5 ⋅ 3 5 2 5 1 3 5 ⋅ 2 5 3 5 ⋅ 3 5 3 5 p ⋅ j 2 5 3 5 \begin{array}{c|cc|c} _X\bcancel{\quad^Y} & 0 & 1 & p_{i·} \\ \hline 0 & \cfrac{2}{5}·\cfrac{2}{5} & \cfrac{2}{5}·\cfrac{3}{5} & \cfrac{2}{5} \\ \\ 1 & \cfrac{3}{5}·\cfrac{2}{5} & \cfrac{3}{5}·\cfrac{3}{5} & \cfrac{3}{5} \\ \\ \hline p_{·j} & \cfrac{2}{5} & \cfrac{3}{5} & \end{array} XY 01pj0525253525215253535353pi5253

上面两表中,联合分布律不同,但它们的边际分布律相同;这说明,仅由边际分布一般不能得到联合分布。


例 2: 设一群体 80% 的人不吸烟, 15% 的人量吸烟,5% 的人吸烟较多,且已知近期他们患呼吸道疾病的概率分别为 5%,25%,70%。记

X = { 0 , 不吸烟 1 , 少量吸烟 2 , 吸烟较多 , Y = { 1 , 患病 0 , 不患病 X=\begin{cases} 0, & \text{不吸烟} \\ 1, & \text{少量吸烟} \\ 2, & \text{吸烟较多} \end{cases}, Y=\begin{cases} 1, & \text{患病} \\ 0, & \text{不患病} \end{cases} X=0,1,2,不吸烟少量吸烟吸烟较多Y={1,0,患病不患病

求:(1) ( X , Y ) (X,Y) (X,Y) 的联合分布和边际分布
     \quad\,\,\,\, (2)求患者人中是吸烟者的概率。

解:(1)由题意可得:

X 0 1 2 P 0.8 0.15 0.05 \begin{array}{c|ccc} X & 0 & 1 & 2 \\ \hline P & 0.8 & 0.15 & 0.05 \end{array} XP00.810.1520.05

P { Y = 1 ∣ X = 0 } = 0.05 , P { Y = 1 ∣ X = 1 } = 0.25 , P { Y = 1 ∣ X = 2 } = 0.70 P\{Y=1|X=0\}=0.05,P\{Y=1|X=1\}=0.25,P\{Y=1|X=2\}=0.70 P{Y=1X=0}=0.05P{Y=1X=1}=0.25P{Y=1X=2}=0.70

由乘法公式: P { X = i , Y = j } = P { X = i } P { Y = j ∣ X = i } P\{X=i,Y=j\}=P\{X=i\}P\{Y=j|X=i\} P{X=i,Y=j}=P{X=i}P{Y=jX=i}

X Y 0 1 P ( X = i ) 0 0.76 0.04 0.80 1 0.1125 0.0375 0.15 2 0.015 0.035 0.05 P ( Y = j ) 0.8875 0.1125 1 \begin{array}{c|cc|c} _X\bcancel{\quad^Y} & 0 & 1 & P(X=i) \\ \hline 0 & 0.76 & 0.04 & 0.80 \\ 1 & 0.1125 & 0.0375 & 0.15 \\ 2 & 0.015 & 0.035 & 0.05 \\ \hline P(Y=j) & 0.8875 & 0.1125 & 1 \end{array} XY 012P(Y=j)00.760.11250.0150.887510.040.03750.0350.1125P(X=i)0.800.150.051

解: (2)

P ( 患 病 人 中 是 吸 烟 者 ) = P { ( X = 1 ) ⋃ ( X = 2 ) ∣ Y = 1 } = 不相容  P { X = 1 ∣ Y = 1 } + P { X = 2 ∣ Y = 1 } = P { X = 1 , Y = 1 } P { Y = 1 } + P { X = 2 , Y = 1 } P { Y = 1 } = 0.0375 + 0.035 0.1125 = 0.6444 \begin{aligned} & P(患病人中是吸烟者) \\ & = P\{(X=1)\bigcup(X=2)|Y=1\} \\ &\overset{\text{不相容 }}{=} P\{X=1|Y=1\} + P\{X=2|Y=1\} \\ \\ &= \cfrac{P\{X=1,Y=1\}}{P\{Y=1\}} + \cfrac{P\{X=2,Y=1\}}{P\{Y=1\}} \\ &= \cfrac{0.0375 + 0.035}{0.1125} = 0.6444 \end{aligned} P()=P{(X=1)(X=2)Y=1}=不相容 P{X=1Y=1}+P{X=2Y=1}=P{Y=1}P{X=1,Y=1}+P{Y=1}P{X=2,Y=1}=0.11250.0375+0.035=0.6444


条件分布

对于两个事件 A , B A,B A,B ,若 P ( A ) > 0 P(A)>0 P(A)>0 ,可以考虑条件概率 P ( B ∣ A ) P(B|A) P(BA),对于二元离散型随机变量 ( X , Y ) (X,Y) (X,Y),设其分布律为:
P ( X = x i , Y = y j ) = p i j i , j = 1 , 2 , ⋯ P(X=x_i,Y=y_j)=p_{ij}\quad i,j=1,2,\cdots P(X=xi,Y=yj)=piji,j=1,2,

P ( Y = y j ) = p ⋅ j > 0 P(Y=y_j)=p_{·j}>0 P(Y=yj)=pj>0,考虑条件概率 P ( X = x i ∣ Y = y j ) P(X=x_i|Y=y_j) P(X=xiY=yj)

由条件概率公式可得:

P ( X = x i ∣ Y = y j ) = P ( X = x i , Y = y j ) P ( Y = y j ) = p i j p ⋅ j P(X=x_i|Y=y_j) = \cfrac{P(X=x_i,Y=y_j)}{P(Y=y_j)}=\cfrac{p_{ij}}{p_{·j}} P(X=xiY=yj)=P(Y=yj)P(X=xi,Y=yj)=pjpij

X X X 取遍所有可能的值,就得到了条件分布律。

定义: ( X , Y ) (X,Y) (X,Y) 是二元离散型随机变量,对于固定的 y j y_j yj,若 P ( Y = y j ) > 0 P(Y=y_j)>0 P(Y=yj)>0,则称:

P ( X = x i ∣ Y = y j ) = P ( X = x i , Y = y j ) P ( Y = y j ) = p i j p ⋅ j i = 1 , 2 , ⋯ P(X=x_i|Y=y_j)=\cfrac{P(X=x_i,Y=y_j)}{P(Y=y_j)}=\cfrac{p_{ij}}{p_{·j}} \quad i=1,2,\cdots P(X=xiY=yj)=P(Y=yj)P(X=xi,Y=yj)=pjpiji=1,2,

为在 Y = y j Y=y_j Y=yj 条件下,随机变量 X X X 的条件分布律;

同样,对于固定的 x i x_i xi,若 P ( X = x i ) > 0 P(X=x_i)>0 P(X=xi)>0,则称:

P ( Y = y j ∣ X = x i ) = P ( X = x i , Y = y j ) P ( X = x i ) = p i j p i ⋅ j = 1 , 2 , ⋯ P(Y=y_j|X=x_i)=\cfrac{P(X=x_i,Y=y_j)}{P(X=x_i)}=\cfrac{p_{ij}}{p_{i·}} \quad j=1,2,\cdots P(Y=yjX=xi)=P(X=xi)P(X=xi,Y=yj)=pipijj=1,2,

为在 X = x i X=x_i X=xi 条件下,随机变量 Y Y Y 的条件分布律。


例 3: 盒中装有 3 只红球, 4 只黑球, 3 只球,在其中不放回取 2 球,以 X X X 表示取到红球的只数, Y Y Y 表示取到黑球的只数。求(1) X , Y X,Y X,Y 的联合分布律;(2) X = 1 X=1 X=1 Y Y Y 的条件分布律.

解: (1) X , Y X,Y X,Y 的取值均为 0,1,2

P ( X = 0 , Y = 0 ) = C 3 0   C 4 0   C 3 2 C 10 2 P(X=0,Y=0)=\cfrac{C_{3}^{0}\,C_{4}^{0}\,C_{3}^{2}}{C_{10}^{2}} P(X=0,Y=0)=C102C30C40C32

P ( X = i , Y = j ) = C 3 i   C 4 j   C 3 2 − i − j C 10 2 i , j = 0 , 1 , 2 , i + j ≤ 2. P(X=i,Y=j)=\cfrac{C_{3}^{i}\,C_{4}^{j}\,C_{3}^{2-i-j}}{C_{10}^{2}}\quad i,j=0,1,2,i+j\leq2. P(X=i,Y=j)=C102C3iC4jC32iji,j=0,1,2,i+j2.

X , Y X,Y X,Y 的分布律为:

X Y 0 1 2 0 1 / 15 4 / 15 2 / 15 1 3 / 15 4 / 15 0 2 1 / 15 0 0 \begin{array}{c|ccc} _X\bcancel{\quad ^Y} & 0 & 1 & 2 \\ \hline 0 & 1/15 & 4/15 & 2/15 \\ 1 & 3/15 & 4/15 & 0 \\ 2 & 1/15 & 0 & 0 \end{array} XY 01201/153/151/1514/154/15022/1500

(2)由(1)可知, 由于 P ( X = 1 ) = 7 / 15 P(X=1)=7/15 P(X=1)=7/15

故在 X = 1 X=1 X=1 的条件下, Y Y Y 的分布律为:

P ( Y = 0 ∣ X = 1 ) = P ( X = 1 , Y = 0 ) P ( X = 1 ) = 3 7 P(Y=0|X=1)=\cfrac{P(X=1,Y=0)}{P(X=1)}=\cfrac{3}{7} P(Y=0X=1)=P(X=1)P(X=1,Y=0)=73

P ( Y = 1 ∣ X = 1 ) = 4 7 P(Y=1|X=1)=\cfrac{4}{7} P(Y=1X=1)=74

P ( Y = 2 ∣ X = 1 ) = 0. P(Y=2|X=1)=0. P(Y=2X=1)=0.

Y 0 1 2 P ( Y = j ∣ X = 1 ) 3 / 7 4 / 7 0 \begin{array}{c|ccc} Y & 0 & 1 & 2 \\ \hline P(Y=j|X=1) & 3/7 & 4/7 & 0 \end{array} YP(Y=jX=1)03/714/720


例 4: ( X , Y ) (X,Y) (X,Y) 的联合分布律为:

X Y − 1 0 1 1 a 0.2 0.2 2 0.1 0.1 b \begin{array}{c|ccc} _X\bcancel{\quad ^Y} & -1 & 0 & 1 \\ \hline 1 & a & 0.2 & 0.2 \\ 2 & 0.1 & 0.1 & b \\ \end{array} XY 121a0.100.20.110.2b

已知, P ( Y ≤ 0 ∣ X < 2 ) = 0.5 P(Y\leq 0 | X < 2)=0.5 P(Y0X<2)=0.5

求:
(1) a , b a,b a,b 的值;
(2) { X = 2 } \{X=2\} {X=2} 条件下 Y Y Y 的条件分布律;
(3) { X + y = 2 } \{X+y=2\} {X+y=2} 条件下 X X X 的条件分布律;

解:考虑包含 a , b a, b a,b 的方程

{ a + b + 0.6 = 1 P ( Y ≤ 0 ∣ X < 2 ) = 0.5 \begin{cases} a+b+0.6 = 1 \\ P(Y\leq 0 | X < 2)=0.5 \end{cases} {a+b+0.6=1P(Y0X<2)=0.5

0.5 = P ( Y ≤ 0 ∣ X < 2 ) P ( X < 2 ) = P ( X = 1 , { Y = − 1 } ⋃ { Y = 0 } ) P ( X = 1 ) = P ( X = 1 , Y = − 1 ) + P ( X = 1 , Y = 0 ) P ( X = 1 ) = a + 0.2 a + 0.4    ⟹    a = 0 , b = 0.4 \begin{aligned} 0.5 &= \cfrac{P(Y\leq 0|X<2)}{P(X<2)} = \cfrac{P(X=1,\{Y=-1\}\bigcup \{Y=0\})}{P(X=1)} \\ &= \cfrac{P(X=1,Y=-1)+P(X=1,Y=0)}{P(X=1)} \\ &= \cfrac{a+0.2}{a+0.4} \\ \\ &\implies a=0, \quad b=0.4 \end{aligned} 0.5=P(X<2)P(Y0X<2)=P(X=1)P(X=1,{Y=1}{Y=0})=P(X=1)P(X=1,Y=1)+P(X=1,Y=0)=a+0.4a+0.2a=0,b=0.4

解:(2) P ( X = 2 ) = 0.1 + 0.1 + b = 0.6 P(X=2)=0.1+0.1+b=0.6 P(X=2)=0.1+0.1+b=0.6

X Y − 1 0 1 1 0 0.2 0.2 2 0.1 0.1 0.4 \begin{array}{c|ccc} _X\bcancel{\quad ^Y} & -1 & 0 & 1 \\ \hline 1 & 0 & 0.2 & 0.2 \\ 2 & 0.1 & 0.1 & 0.4 \\ \end{array} XY 12100.100.20.110.20.4

   ⟹    P ( Y j ∣ X = 2 ) = P ( X = 2 , Y = j ) P ( X = 2 ) = { 1 / 6 , j = − 1 1 / 6 , j = 0 2 / 3 , j = 1 \implies P(Y_j|X=2)=\cfrac{P(X=2,Y=j)}{P(X=2)}= \begin{cases} 1/6, & j=-1 \\ 1/6, & j=0 \\ 2/3, & j=1 \end{cases} P(YjX=2)=P(X=2)P(X=2,Y=j)=1/6,1/6,2/3,j=1j=0j=1

所以, { X = 2 } \{X=2\} {X=2} 条件下 Y Y Y 的条件分布律为:

Y − 1 0 1 P ( Y = j ∣ X = 2 ) 1 6 1 6 2 3 \begin{array}{c|ccc} Y & -1 & 0 & 1 \\ \hline P(Y=j|X=2) & \cfrac{1}{6} & \cfrac{1}{6} & \cfrac{2}{3} \end{array} YP(Y=jX=2)161061132

解:(3) P ( X + Y = 2 ) = P ( X = 1 , Y = 1 ) + P ( X = 2 , Y = 0 ) = 0.2 + 0.1 = 0.3 P(X+Y=2)=P(X=1,Y=1)+P(X=2,Y=0)=0.2+0.1=0.3 P(X+Y=2)=P(X=1,Y=1)+P(X=2,Y=0)=0.2+0.1=0.3

X Y − 1 0 1 1 0 0.2 0.2 2 0.1 0.1 0.4 \begin{array}{c|ccc} _X\bcancel{\quad ^Y} & -1 & 0 & 1 \\ \hline 1 & 0 & 0.2 & 0.2 \\ 2 & 0.1 & 0.1 & 0.4 \\ \end{array} XY 12100.100.20.110.20.4

P ( X = i ∣ X + Y = 2 ) = P ( X = i , Y = 2 − i ) P ( X + Y = 2 ) = { 2 / 3 , i = 1 1 / 3 , i = 2 P(X=i|X+Y=2)=\cfrac{P(X=i,Y=2-i)}{P(X+Y=2)}= \begin{cases} 2/3, & i = 1 \\ 1/3, & i = 2 \end{cases} P(X=iX+Y=2)=P(X+Y=2)P(X=i,Y=2i)={2/3,1/3,i=1i=2

{ X + Y = 2 } \{X+Y=2\} {X+Y=2} 条件下 X X X 的条件分布律为:

X 1 2 P ( X = i ∣ X + Y = 2 ) 2 3 1 3 \begin{array}{c|cc} X & 1 & 2 \\ \hline P(X=i|X+Y=2) & \cfrac{2}{3} & \cfrac{1}{3} \end{array} XP(X=iX+Y=2)132231

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值